Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1532-1542    DOI: 10.3724/SP.J.1037.2013.00320
  论文 本期目录 | 过刊浏览 |
喷射沉积锭坯的三维成形过程数值模拟与工艺研究
袁浩1),樊俊飞2),任三兵2),王浩伟1),张亦杰1)
1) 上海交通大学金属基复合材料国家重点实验室, 上海 200240
2) 宝钢集团中央研究院前沿技术研究所, 上海 201900
THREE—DIMENSIONAL MATHEMATICAL SHAPE MODEL AND PROCESS RESEARCH OF SPRAY—FORMED BILLET
YUAN Hao1), FAN Junfei2), REN Sanbing2), WANG Haowei1), ZHANG Yijie1)
1) State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
2) Advanced Technology Institute, Baosteel Research Institute, Shanghai 201900
引用本文:

袁浩,樊俊飞,任三兵,王浩伟,张亦杰. 喷射沉积锭坯的三维成形过程数值模拟与工艺研究[J]. 金属学报, 2013, 49(12): 1532-1542.
YUAN Hao, FAN Junfei, REN Sanbing, WANG Haowei, ZHANG Yijie. THREE—DIMENSIONAL MATHEMATICAL SHAPE MODEL AND PROCESS RESEARCH OF SPRAY—FORMED BILLET[J]. Acta Metall Sin, 2013, 49(12): 1532-1542.

全文: PDF(3878 KB)  
摘要: 

使用坐标跟踪法建立了描述喷射成形圆柱坯外形生长的三维数学模型,通过背面剔除和表面三角形单元判断相结合的方法,提出了一种能够准确、简便地计算遮蔽效应的三维算法.该模型严格遵循喷射成形的实际过程建立, 经过实验验证,可以对沉积坯外形做出较为准确的预测. 基于以上模型,还计算研究了不同工艺参数对锭坯外形演化的影响. 模拟结果表明,雾化参数、基板下移速率和初始偏心距是影响沉积坯外形的重要工艺参数.

关键词 喷射成形数值模拟圆柱坯三维成形遮蔽效应    
Abstract

Spray forming is an advanced technology that is used to produce a variety of high—performance materials with the characteristics of rapid solidification. By properly controlling of spray forming parameters, it is possible to fabricate near—net—shaped preforms, such as rod—billets, strips, and tubes. During the billet spray forming process, the shape of deposit strongly influences the solidification and consequently end—product quality. Therefore, it is necessary to reveal the shape forming mechanism in spray forming process. In the present work, a three—dimensional (3D) model, tracing the coordinates of the moving surface of a growing spray—formed billet, has been formulated to predict the shape evolution of the general deposit. This geometric model takes into account geometrical process parameters in the whole spray forming process: mass flux and mass distribution, position of the atomizer, distance between atomizer and the preform, substrate withdrawal velocity and rotation speed. This makes it possible to model not only the growth of a Gaussian shaped deposit in which case the spray axis and the rotation axis coincide, but also the profile evolution as there is a spray angle between these two axes. For this purpose, “shadowing effect” must be taken into account as a core part of the surface evolution algorithm. On the basis of this 3D model, a timesaving and accurate methodology is established to determine the shadowing effect coefficient, using the “triangular element checking” algorithm coupled with back face culling (BFC). The transient shape modeling has been validated by numerical algorithms and experimental investigation, and has proved that the simulated billet profiles are in good agreement with the experimental data. The effect of spray forming parameters, such as spray distribution parameters, withdrawal velocity, initial eccentric distance, spray angle and angular velocity of rotation, are analyzed. According to the obtained simulation results, the most dominant parameters affecting the shape evolution of deposit are the spray distribution parameters, withdrawal velocity, and initial eccentric distance. It is also found that the spray angle mainly affects the profile  of the top transition region of the rod. The effect of the angular velocities of substrate on the shape evolution of the deposit is not significant. Finally, the maximum withdrawal velocity and maximum initial eccentric distance are deduced based on the analysis of shape form mechanism, which can be used to guide the process optimization during spray forming.

Key wordsspray forming    numerical simulation    rod—billet    three—dimensional modeling    shadowing effect
收稿日期: 2013-06-13     
作者简介: 袁浩, 男, 1988年生, 硕士生

[1] Grant P S.  Prog Mater Sci, 1995; 39: 497

[2] Cui C S, Zhang J G.  Shanghai Met, 2012; 34(3): 39
(崔成松, 章靖国. 上海金属, 2012; 34(3): 39)
[3] Cui C S, Zhang J G.  Shanghai Met, 2012; 34(2): 42
(崔成松, 章靖国. 上海金属, 2012; 34(2): 42)
[4] Zhang J S, Xiong B Q, Cui H.  Spray Forming Rapid Solidification Technology Principles and Applications. Beijing: Science Press, 2008: 1
(张济山, 熊柏青, 崔华. 喷射成形快速凝固技术原理与应用. 北京: 科学出版社, 2008: 1)
[5] Lavernia E J, Grant N J.  Mater Sci Eng, 1988; 98: 381
[6] Singer A R E.  Powder Metall, 1982; 25: 195
[7] Lavernia E J, Xu Q.  J Jpn Inst Light Met, 2000; 50: 479
[8] Frigaard I A.  J Eng Math, 1996; 30: 417
[9] Frigaard I A, Scherzer O.  Siam J Appl Math, 1997; 57: 649
[10] Annavarapu S, Apelian D, Lawley A.  Metall Trans, 1990; 21A: 3237
[11] Mathur P, Annavarapu S, Apelian D, Lawley A.  Mater Sci Eng, 1991; A142: 261
[12] Kang S N, Chang D H.  Mater Sci Eng, 1999; A260: 161
[13] Lin Y J, Bobrow J E, White D R, Lavernia E J.  Metall Mater Trans, 2000; 31A: 2917
[14] Seok H K, Yeo D H, Oh K H, Lee H I, Ra H Y.  Metall Mater Trans, 1998; 29B: 699
[15] Hattel J H, Pryds N H, Pedersen T B.  Mater Sci Eng, 2004; A383: 184
[16] Hattel J H, Pryds N H.  Acta Mater, 2004; 52: 5275
[17] Pryds N H, Hattel J H, Pedersen T B, Thorborg J.  Acta Mater, 2002; 50: 4075
[18] Cui C S, Fritsching U, Schuz A, Li Q C.   Acta Mater, 2005; 50: 2765
[19] Cao F Y, Wu P L, Ning Z L, Zhao W J, Sun J F.  Rare Met, 2007; 26: 30
[20] Cui C S, Fritsching U, Schulz A.  Metall Mater Trans, 2007; 38B: 333
[21] Choi D S.  J Mech Sci Technol, 2010; 24: 1091
[22] Mi J, Grant P S.  Acta Mater, 2008; 56: 1588
[23] Cao F Y, Li P J, Fan H B, Cui C S, Li Q C.  Mater Sci Technol, 2003; 11: 50
(曹福洋, 李培杰, 范洪波, 崔成松, 李庆春. 材料科学与工艺, 2003; 11: 50)
[24] Zhao J Z, Liu D M, Wang J T, Ye H Q. Spec Cast Nonferrous Alloys, 2004;(4): 1
(赵九洲, 刘东明, 王江涛, 叶恒强. 特种铸造及有色合金, 2004; (4): 1)
[25] Liu D M, Zhao J Z, Ye H Q.  Acta Metall Sin, 2004; 40: 873
(刘东明, 赵九洲, 叶恒强. 金属学报, 2004; 40: 873)
[26] Fan W J, Zhang Y.  J Inner Mongolia Univ Sci Technol, 2007; 26: 203
(樊文军, 张胤. 内蒙古科技大学学报 2007; 26: 203)
[27] Markus S, Cui C, Fritsching U.  Mater Sci Eng, 2004; A383: 166
[28] Mi J, Grant P S, Fritsching U, Belkessam O, Garmendia I, Landaberea A.  Mater Sci Eng, 2008; A477: 2
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[7] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[10] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[11] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[12] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[13] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[14] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[15] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.