Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1227-1233    DOI: 10.3724/SP.J.1037.2013.00266
  论文 本期目录 | 过刊浏览 |
Mg-Zn-Ca合金中AB2型金属间化合物电子结构和弹性性质的第一性原理计算
毛萍莉,于波,刘正,王峰,鞠阳
沈阳工业大学材料科学与工程学院, 沈阳 110870
FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY
MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
引用本文:

毛萍莉,于波,刘正,王峰,鞠阳. Mg-Zn-Ca合金中AB2型金属间化合物电子结构和弹性性质的第一性原理计算[J]. 金属学报, 2013, 49(10): 1227-1233.
MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. Acta Metall Sin, 2013, 49(10): 1227-1233.

全文: PDF(1516 KB)  
摘要: 

通过基于密度泛函理论的第一性原理计算方法, 对Mg2Sn, Mg2Ca和MgZn2的结构稳定性、电子结构和弹性性质进行了计算, 计算所得晶格参数与实验值和文献计算值吻合.合金形成热和结合能的计算结果表明, Mg2Sn具有最强的合金形成能力和结构稳定性.通过对Mg2Sn, Mg2Ca和MgZn2的电子态密度(DOS)和差分电荷密度进行计算,分析了其结构稳定性和弹性性质的机制. 计算了Mg2Sn, Mg2Ca和MgZn2的弹性常数,推导了体模量Bu, 剪切模量G, Young's模量E和Poisson比ν的数值, 结果表明, Mg2Sn为脆性相,Mg2Ca和MgZn2为延性相, Mg2Sn的刚度最大, MgZn2的塑性最好.

关键词 镁合金第一原理计算结构稳定性电子结构弹性性质    
Abstract

Electronic structure and elastic properties of Mg2Sn, Mg2Ca and MgZn2 phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT). The calculated lattice parameters were in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Mg2Sn has the strongest alloying ability and structural stability. The density of states (DOS) of Mg2Sn, Mg2Ca and MgZn2 phases were calculated to analyze the mechanism of structural stability and mechanical properties. The calculated band structures show that Mg2Sn phase has the widest bandgap. The electron density difference indicate that bonding characteristics of Mg2Sn, Mg2Ca and MgZn2 phases were all covalent bond, ionic bond and metallic bond. The elastic constants of Mg2Sn, Mg2Ca and MgZn2 phases are calculated, the bulk moduli, shear moduli, Young's moduli and Poisson's ratio are then derived. Bulk moduli is assumed to be the ability of material resistance to volume change by applied stress, the larger bulk modulus of MgZn2 phase shows that it has stronger ability to resist deformation. Shear moduli is a measure of resistance to shear strain deformation under the deformation condition of shear stress, the larger shear moduli value of Mg2Sn phase indicates that it has the stronger ability to resist shear strain deformation. The calculated Poisson's ration shows that MgZn2 has the largest value, and then followed by Mg2Ca and Mg2Sn. Hence, the plasticity of MgZn2 phase is the best. The calculated Young's moduli of Mg2Sn phase has the largest value and MgZn2 phase has the smallest value. Hence, among the three phases Mg2Sn phase has the strongest stiffness. The ratio of the shear moduli to bulk moduli of phase can be used to demonstrate the brittle and ductile of materials. The critical value, which separates ductility from brittleness, is about 0.57. A higher G/Bu value is associated withbrittleness, otherwise is ductility. The calculated values of Mg2Sn, Mg2Ca and MgZn2 phases are 0.66, 0.53 and 0.18, respectively. The results show that Mg2Sn is brittle, Mg2Ca and MgZn2 are both ductile.

Key wordsmagnesium alloy    first-principles calculation    structural stability    electronic structure    elastic property
收稿日期: 2013-05-13     
基金资助:

国家科技支撑计划项目2011BAE22B01和2011BAE22B06及辽宁省高校创新团队支持计划项目资助

作者简介: 毛萍莉, 女, 1967年生, 教授, 博士

[1] Yang H Y, Guo X W, Wu G H, Wang S H, Ding W J. Surf Coat Technol, 2011; 205: 2907

[2] Liu Z, Zhang K, Zeng X Q. Magnesium-Based Light-Alloy Theoretical Basis and the Application.Beijing: Mechanical Industry Press, 2002: 1
(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用. 北京: 机械工业出版社, 2002: 1)
[3] Song W, Wu Z G, He Y H, Huang B Y. Chin J Nonferrous Met, 2008; 18: 1971
(宋旼, 吴正刚, 贺跃辉, 黄伯云. 中国有色金属学报, 2008; 18: 1971)
[4] Zhou D W, Xu S H, Zhang F Q, Peng P, Liu J S. Acta Metall Sin, 2010; 46: 97
(周惦武, 徐少华, 张福全, 彭平, 刘金水. 金属学报, 2010; 46: 97)
[5] ЛякишевH П, translated by Guo Q W. Metal Binary System Manual. Beijing: Chemical Industry Press,2009: 914
(梁基谢夫 著, 郭青蔚译. 金属二元系相图手册. 北京:化学工业出版社, 2009: 914)
[6] Gao X, Nie J F. Scr Mater, 2007; 57: 655
[7] Zeng X Q, Zhang Y, Lu C, Ding W J, Wang Y X, Zhu Y P. J Alloys Compd, 2005; 395: 213
[8] Qin B, Yu W B, Li F P, Li C M. Foundry, 2010; 59: 886
(秦兵, 于文斌, 李坊平, 李春梅. 铸造, 2010; 59: 886)
[9] Li S H, Zhang C X, Guan S K, Wen C L, Tian H T, Yu W W, Meng H. J Mater Sci Eng, 2012; 30: 563
(李少华, 张春香, 关绍康, 文春领, 田海棠, 于雯雯, 孟辉. 材料科学与工程学报, 2012; 30: 563)
[10] Zhang B P, Wang Y, Geng L, Lu C X. Mater Sci Eng, 2012; A39: 56
[11] Tong L B, Zheng M Y, Hua X S, Wu K, Xu S W, Kamado S, Kojima Y. Mater Sci Eng, 2010; A527: 4250
[12] Geng L, Zhang B P, Li A B, Dong C C. Mater Lett, 2009; 63: 557
[13] Cheng L. Master Thesis, Chongqing University of technlolgy, 2011
(程亮. 重庆理工大学硕士学位论文, 2011)
[14] Xiang Q, Wu R Z, Zhang M L. J Alloys Compd, 2009; 477: 832
[15] Nayyeri G, Mahmudi R, Salehi F. Mater Sci Eng, 2010; A527: 5353
[16] Pan X Q, Chen J H, Yan H G, Su B, Wei J Y, Fan C. Mater Sci Technol, 2013; 29: 169
[17] Wang P, Li J P, Guo Y C, Yang Z, Xia F, Wang J L. Rare Met Mater Eng, 2012; 41: 2095
(王萍, 李建平, 郭永春, 杨忠, 夏峰, 王建利. 稀有金属材料与工程, 2012; 41: 2095)
[18] Liu Z, Zhang Y, Mao P L, Yang C H. Spec Cast Nonferrous Alloys, 2012; 32: 1000
(刘正, 张越, 毛萍莉, 杨春海. 特种铸造及有色合金, 2012; 32: 1000)
[19] Shi D M, Wen B, Melnik R, Yao S, Li T J. J Solid State Chem, 2009; 82: 2664
[20] Pack J D, Monkhors H J. Phys Rev, 1977; 16B: 1748
[21] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[22] Fagan S B, Mota R, Baierle R J, Paiva G, Da Silva A J R, Fazzio A. J Mol Struct, 2001; 539: 101
[23] Zhang H, Shang S L, Saal J E, Saengdeejing A, Wang Y, Chen L Q, Liu Z K. Intermetallics, 2009; 17: 878
[24] Groseh G H, Range K J. J Alloys Compd, 1996; 235: 250
[25] Suzuki A, Saddock N D, Jomes J W, Pollock T M. Acta Mater, 2005; 53: 2823
[26] Yu W Y. Master Thesis, Xiangtan University, 2009
(余伟阳. 湘潭大学硕士学位论文, 2009)
[27] Huang K. Solid State Physics. Beijing: Higher Education Press, 1985: 68
(黄昆. 固体物理学. 北京:高等教育出社, 1985: 68)
[28] Li C H, Hoe J L, Wu P. J Phys Chem Solids, 2003; 64: 201
[29] Sahu B R. Mater Sci Eng, 1997; B49: 74
[30] Lin W, Xu J H, Freeman A J. Phys Rev, 1992; 45B: 10863
[31] Huang Z W, Zhao Y H, Hou H, Han P D. Physica, 2012; 407B: 1075
[32] Yu W Y, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400
[33] Nye J F. Physical Properties of Crystals. Oxford: Clarendon Press, 1964: 1
[34] Davis L C, Whitten W B, Danielson G C. J Phys Chem Solids, 1967; 28: 439
[35] Corkill J L, Cohen M L. Phys Rev, 1993; 48B: 17138
[36] Seidenkranz T, Hegenbarth E. Phys Status Solidi, 1976; 33A: 205
[37] Li Y F, Gao Y M, Xiao B, Min T, Fan Z J, Ma S Q, Xu L L. J Alloys Compd, 2010; 502: 28
[38] Hill R. Phys Soc Sect, 1952; 65A: 349
[39] Hong S, Fu C L. Intermetallics, 1999; 7: 5
[40] Pugh S F. Philos Mag, 1954; 45: 823
[41] Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[42] Fu C L, Wang X D, Ye Y Y. Intermetallics, 1999; 7: 179
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[10] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[12] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[13] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[14] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[15] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.