Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 1012-1016    DOI: 10.3724/SP.J.1037.2013.00247
  论文 本期目录 | 过刊浏览 |
反应堆控制棒材料Ag-In-Cd合金的压缩蠕变行为
肖红星,龙冲生,陈乐,梁波
中国核动力研究设计院反应堆燃料及材料重点实验室, 成都 610041
COMPRESSIVE CREEP BEHAVIOR OF REACTOR CONTROL ROD MATERIAL Ag-In-Cd ALLOY
XIAO Hongxing, LONG Chongsheng, CHEN Le, LIANG Bo
Science and Technology on Reactor Fuel and Materials Laboratory, NuclearPower Institute of China, Chengdu 610041
引用本文:

肖红星,龙冲生,陈乐,梁波. 反应堆控制棒材料Ag-In-Cd合金的压缩蠕变行为[J]. 金属学报, 2013, 49(8): 1012-1016.
XIAO Hongxing, LONG Chongsheng, CHEN Le, LIANG Bo. COMPRESSIVE CREEP BEHAVIOR OF REACTOR CONTROL ROD MATERIAL Ag-In-Cd ALLOY[J]. Acta Metall Sin, 2013, 49(8): 1012-1016.

全文: PDF(605 KB)  
摘要: 

研究了铸态Ag-In-Cd合金在300—400℃及12—24 MPa压应力范围内的压缩蠕变行为,根据实验结果计算了表观应力指数n和表观激活能Qa, 探讨了合金的压缩蠕变机制.结果表明, 随温度和应力的升高, 合金的稳态蠕变速率增加,稳态蠕变速率与应力之间呈指数关系. 温度为300, 350和400℃时, 合金的$n$分别为2.90, 4.09和5.77;压应力为12, 18和24 MPa时, 合金的Qa值分别为68.1, 103.7和131.6 kJ/mol.位错运动形成大量层错是Ag-In-Cd合金在温度为300—400℃, 压应力为12—24 MPa下的压缩蠕变控制机制.

关键词 Ag-In-Cd合金压缩蠕变层错    
Abstract

Ag-In-Cd alloy is widely used as the control rod material in the pressure water reactor (PWR),so it is very important to research the compressive creep behavior for understanding the mechanical property of control rod materials in pile. The compressive creep behavior of as-cast Ag-In-Cd alloy was investigated using a special apparatus at 300—400℃ and under compressive stresses in the range of 12—24 MPa in this work. The stress exponent n and apparent activation energy Qa of the creep process have been calculated as well as the mechanisms of compressive creep behavior have been discussed. The results show that the compressive creep of the alloy increases with the increase of temperature and compressive stress. The relationship between steady creep rate and stress can be expressed in a power law form. The stress exponent n are 2.90, 4.09 and 5.77 at 300, 350 and 400℃ respectively. The apparent activation energy Qa of the creep process are 68.1, 103.7 and 131.6 kJ/mol under compressive stresses of 12, 18 and 24 MPa respectively. Stacking fault is the primary rate controlling mechanism for the Ag-In-Cd alloy at 300—400℃ and the compressive stress range of 12—24 MPa, which was deduced from TEM observation.

Key wordsAg-In-Cd alloy    compressive creep    stacking fault
收稿日期: 2013-05-05     
基金资助:

国家核电重大专项资助项目2011ZX06004-016

作者简介: 肖红星, 男, 1983年生, 助理研究员

[1] Bourgoin J, Couvreur F, Gosset D, Defoort F, Monchanin M, Thibault X.  J Nucl Mater,1999; 275: 296

[2] Xue S J, Chen Y, Qiu S Y.  Nucl Power Eng, 2004; 25: 522
(薛淑娟, 陈勇, 邱绍宇. 核动力工程, 2004; 25: 522)
[3] Devan K, Riyas A, Alagan M, Mohanakrishnan P.  Ann Nucl Energy, 2008; 35: 1484
[4] Sepold L, Lind T, Pinter C A, Stegmaier U, Steinbruck M,
Stuckert J.  Ann Nucl Energy, 2009; 36: 1349
[5] Amir H F, Saeed S.  Prog Nucl Energy, 2009; 51: 184
[6] Mousavi S S A, Aghanajafi C, Sadoughi S, Sharifloo N.  Ann Nucl Energy,2010; 37: 1659
[7] Dubourg R, Austregesilo H, Bals C, Barrachin M.  Prog Nucl Energy, 2010; 52: 97
[8] Tian S G, Zhang J H, Jin T, Yang H C, Xu Y B, Hu Z Q.  Acta Metall Sin, 1999; 35: 392
(田素贵, 张静华, 金涛, 杨洪才, 徐永波, 胡壮麒. 金属学报, 1999; 35: 392)

[9] Sha Y H, Zuo L, Zhang J H, Xu Y B, Hu Z Q.  Acta Metall Sin, 2011; 37: 1142

(沙玉辉, 左良, 张静华, 徐永波, 胡壮麒. 金属学报, 2011; 37: 1142)


[10] Wei S H, Chen Y G, Tang Y B. Liu H M, Xiao S F, Niu G, Zhang X P, Zhao Y H. Mater Sci Eng, 2008; A492: 20
[11] Huang C, Yu X H, Yamabe M Y, Nakazawa S, Harada H.  Mater Lett, 2003; 57: 3371
[12] Wei S H, Chen Y G, Tang Y B, Liu M, Xiao S F, Zhang X P, Zhao Y H. Trans Nonferrous Met Soc, 2008; 18: 214
[13] Wei X W, Shen B L.  Mater Sci Technol, 2004; 12: 642
(魏晓伟, 沈保罗. 材料科学与工艺, 2004; 12: 642)
[14] Ren W L, Guo J T, Zhou J Y.  Acta Metall Sin, 2002; 38: 908
(任维丽, 郭建亭, 周继扬. 金属学报, 2002; 38: 908)
[15] Fu X W, Yang W L, Zhang L Q.  Acta Metall Sin, 2002; 38: 731
(傅晓伟, 杨王朗, 张来启. 金属学报, 2002; 38: 731)
[16] Pekguleryuz M O, Kaya A A.  Adv Eng Mater, 2003; 5: 866
[17] Zeng M, Xu D F, Shen B L.  Mater Heat Treat, 2008; 37: 17
 (曾明, 徐道芬, 沈保罗. 材料热处理技术, 2008; 37: 17)
[18] Liu X Y, Pan Q L, Lu Z L, Cao S F, He Y B, Li W B.  Acta Metall Sin, 2011; 47: 53
 (刘晓艳, 潘清林, 陆智伦, 曹素芳, 何运斌, 李文斌. 金属学报, 2011; 47: 53)
[19] Xu C M. Guo J T.  Acta Metall Sin, 2003; 39: 809
 (徐春梅, 郭建亭. 金属学报, 2003; 39: 809)
[20] Weetman J.  J Appl Phys, 1957; 28: 362
[21] Coble R L.  J Appl Phys, 1963; 34: 1679
[22] Sherby O D, Burke P M.  Prog Mater Sci, 1968; 13: 325
[23] Cannon W R, Sherby O D.  Metall Trans, 1970; 1: 1030
[24] Luo A A.  Int Mater Rev, 2004; 49: 13
[25] Yan J L, Sun Y S, Xue F.  Acta Metall Sin, 2008; 44: 1354
 (晏井利, 孙扬善, 薛烽. 金属学报, 2008; 44: 1354)
[26] Wei S H, Chen Y G, Tang Y B, Zhang X P, Liu M, Xiao S F, Zhao Y H. Mater Sci Eng, 2009; A508: 59
[1] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[4] 王世宏, 李健, 柴锋, 罗小兵, 杨才福, 苏航. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.
[5] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[6] 苏勇,田素贵,于慧臣,于莉丽. 镍基单晶高温合金中温稳态蠕变期间的变形机制*[J]. 金属学报, 2015, 51(12): 1472-1480.
[7] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[8] 薛鹏, 肖伯律, 马宗义. 搅拌摩擦加工超细晶及纳米结构Cu-Al合金的微观组织和力学性能研究*[J]. 金属学报, 2014, 50(2): 245-251.
[9] 邓丽萍, 杨晓芳, HAN Ke, 孙泽元, 刘庆. Cu-Nb复合线材在形变与退火过程中显微结构演变的研究*[J]. 金属学报, 2014, 50(2): 231-237.
[10] 徐玲,储昭贶,崔传勇,谷月峰,孙晓峰. 一种镍钴基变形高温合金蠕变变形机制的研究[J]. 金属学报, 2013, 49(7): 863-870.
[11] 刘仁东 史文 何燕霖 李麟 王福. 含TRIP效应的Fe-18Mn-Si-C热轧TWIP钢的设计与研究[J]. 金属学报, 2012, 48(1): 122-128.
[12] 秦小梅 陈礼清 邸洪双 邓伟. 变形温度对Fe-23Mn-2Al-0.2C TWIP钢变形机制的影响[J]. 金属学报, 2011, 47(9): 1117-1122.
[13] 董明慧 韩培德 张彩丽 杨艳青 张莉莉 李洪飞. Al-Mg合金中层错和孪晶形变能的第一性原理研究[J]. 金属学报, 2011, 47(5): 573-577.
[14] 黄姝珂 刘建辉 李昌安 周丹晨 李宁 文玉华. 预变形对Fe-Mn合金层错几率和阻尼性能的影响[J]. 金属学报, 2009, 45(8): 937-942.
[15] 王书晗 刘振宇 张维娜 王国栋. TWIP钢不同温度变形的力学性能变化规律及机理研究[J]. 金属学报, 2009, 45(5): 573-578.