Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 79-87    DOI: 10.3724/SP.J.1037.2013.00216
  论文 本期目录 | 过刊浏览 |
钎料合金BCo46的抗热腐蚀性能*
景艳红, 刘恩泽(), 郑志, 佟健, 宁礼奎, 何平
中国科学院金属研究所, 沈阳 110016
HOT CORROSION RESISTANCE OF FILLER ALLOY BCo46
JING Yanhong, LIU Enze(), ZHENG Zhi, TONG Jian, Ning Likui, HE Ping
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

景艳红, 刘恩泽, 郑志, 佟健, 宁礼奎, 何平. 钎料合金BCo46的抗热腐蚀性能*[J]. 金属学报, 2014, 50(1): 79-87.
Yanhong JING, Enze LIU, Zhi ZHENG, Jian TONG, Likui Ning, Ping HE. HOT CORROSION RESISTANCE OF FILLER ALLOY BCo46[J]. Acta Metall Sin, 2014, 50(1): 79-87.

全文: PDF(10964 KB)   HTML
摘要: 

采用涂盐方法研究了新型钴基钎料BCo46的抗热腐蚀性能, 并与BNi-2和基材合金DZ468进行了对比. 评估了完全热处理后的采用BCo46钎焊DZ468合金接头的抗热腐蚀性能. 研究表明, BCo46合金的热腐蚀抗力优于DZ468和BNi-2合金, 热腐蚀过程中3种合金都发生了氧化膜溶解和硫化物析出, 合金的腐蚀进程可以用硫化-酸碱熔融的热腐蚀模型解释; 钎焊接头中形成的硼化物会显著降低合金的热腐蚀抗力, 完全热处理后的钎焊接头组织均匀, 接头抗热腐蚀性能与DZ468合金相当.

关键词 BCo46DZ468热腐蚀钎料    
Abstract

DZ468 alloy is a promising candidate in turbine blade serving in marine atmosphere because of its superior mechanical properties and good hot corrosion resistance. And brazing technology is indispensable to produce turbine blade because of its complicated hollow structure. Therefore, for accelerating the application of DZ468 superalloy, a new type Co-based filler named BCo46 was developed. Due to serving in marine atmosphere, the attack of hot corrosion can be inevitable. Frequently, the quality of turbine blade depends on the joining region, and the joining region has a lot to do with the filler used to braze the base alloy. Therefore, in this work, the hot corrosion behavior and mechanism of BCo46 alloy in the mixture of 75%Na2SO4 + 25%NaCl (mass fraction) at 900 ℃ was investigated, and compared with a common Ni-based filler BNi-2, and the base alloy DZ468. Moreover, the hot corrosion resistance of the joint bonded with BCo46 was evaluated. XRD, SEM, EDS and ICP spectrograph were employed to study the corrosion products of the tested alloys. The results show that the hot corrosion processes of BCo46, BNi-2 and DZ468 alloys are all accompanied with the dissolution of oxide scale and the formation of sulfide, which support the model of sulfidation-(acid-based) melting model. For filler alloy BCo46, Cr2O3, Co3BO5 and (Ni, Co)Cr2O4 mainly exist in the outer corrosion layer and some CrS is formed in the inner corrosion layer; the external corrosion products of BNi-2 are NiO, (Ni, Co)Cr2O4, Ni2FeBO5 and Cr2O3, and the internal precipitation is Ni2S3. The hot corrosion resistance of filler alloy BCo46 is superior to DZ468 superalloy and BNi-2 filler, it is because (1) BCo46 contains 22% Cr which can form dense and continuous oxide scale Cr2O3; (2) the diffusion rates of O and S are slower in Co- than Ni-based alloy; (3) Co can increase the adhesion of the oxide scale-base metal; (4) collaboration dissolution doesn't occur in BCo46. Furthermore, the formation of boride can deteriorate the hot corrosion resistance of alloy by forming oxides of boron which can dissolve oxide scale, consume Cr and increase phase interfacial area to accelerate the diffusion of S and O. The joint after heat treatment can reach the level of the hot corrosion resistance of the base metal DZ468.

Key wordsBCo46    DZ468    hot corrosion    filler
收稿日期: 2013-04-25     
ZTFLH:  TG146  
作者简介: null

景艳红, 女, 1988年生, 硕士

Alloy Al Mo W Co Cr Ti Ta Re C B Fe Si Ni
BCo46 - - 10 Bal. 22 - - - - 2 - - 20
BNi-2 - - - - 7 - - - - 3 3 4.5 Bal.
DZ468 5.2 1 5 8.5 12 0.5 5 2 0.06 0.01 - - Bal.
  
图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
Alloy Cr Ni B
BCo46 13.6 0.51 2
BNi-2 61.9 0.74 61
  
图9  
图10  
[1] Zhao D Z.Equip Environ Eng, 2011; 8(5): 100
[1] (赵德孜. 装备环境工程, 2011; 8(5): 100)
[2] Ning L K, Zheng Z, Tan Y, Liu E Z, Tong J, Yu Y S, Wang H.Acta Metall Sin, 2009; 45:161
[2] (宁礼奎, 郑 志, 谭 毅, 刘恩泽, 佟 健, 于永泗, 王 华. 金属学报, 2009; 45: 161)
[3] Liu E Z, Sun S C, Tu G F, Zheng Z, Ning L K, Zhang L F.Acta Metall Sin, 2009; 45: 1217
[3] (刘恩泽, 孙树臣, 涂赣峰, 郑 志, 宁礼奎, 张凌峰. 金属学报, 2009; 45: 1217)
[4] Jing Y H,Zheng Z,Liu E Z,Guo Y. J Mater Sci Technol, 2014; 30(in press)
[5] Stringer J.Mater Sci Technol, 1987; 3: 482
[6] Lee W H, Lin R Y.Mater Chem Phys, 2002; 77: 86
[7] Li M H, Sun X F, Hu W Y, Guan H R, Chen S G. Oxid Met, 2006; 65: 137
[8] Simons E L, Browning G V, Liebhafsky H A.Corrosion, 1955; 11: 505
[9] Zhu R Z, Zuo Y, Guo M J.Acta Matell Sin, 1985; 21: 451
[9] (朱日彰, 左 禹, 郭曼玖. 金属学报, 1985; 21: 451)
[10] Bornstein N S, Decrescent M A.Trans AIME, 1969; 245: 583
[11] Quets J M, Dresher W H.J Mater, 1969; 4: 583
[12] Rapp R A, Goto K S. In: Braunstein J, Selman J R eds., Proceedings of the Second International Symposium on Molten Salts, Pennington: the Electrochemical society, 1981: 159
[13] Park C O, Rapp R A.Electrochem Sci Technol, 1986; 133: 1636
[14] Tzvetkoff T Z, Girginov A.J Mater Sci, 1995; 30: 5561
[15] Liu E Z, Sun S C.Heat Treat Met, 2009; 34(6): 84
[15] (刘恩泽, 孙树臣. 金属热处理, 2009; 34(6): 84)
[16] Lu S P, Guo Y, Chen L S.Mater Rev, 1999; 13(6): 58
[16] (陆善平, 郭 义, 陈亮山. 材料导报, 1999; 13(6): 58)
[17] Zhuang H S,Lugscheider E. High Temperature Brazing. Beijing: National Defence Industry Press, 1989: 46
[17] (庄鸿寿,Lugscheider E. 高温钎焊. 北京: 国防工业出版社, 1989: 46)
[18] Ning L K. Master Thesis, Dalian University of Technology, 2008
[18] (宁礼奎. 大连理工大学硕士学位论文, 2008)
[19] Fryburg G C, Kohl F J, Stearns C A.J Electrochem Soc, 1984; 131: 2985
[20] Fryburg G C, Kohl F J, Stearns C A.J Electrochem Soc, 1982; 129: 571
[21] Gupta D K.J Electrochem Soc, 1980; 127: 2194
[22] Rapp R A.Mater Sci Eng, 1987; 87: 568
[23] Li T F. High Temperature Oxidation and Hot Corrosion of Metal. Beijing: Chemical Industrial Press, 2003: 203
[23] (李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2003: 203)
[24] Guan D L, Lu Z H, Xiao Y T, Shi C X.J Chin Soc Corros Prot, 1981; 1: 49
[24] (关德林, 陆之汉, 肖耀天, 师昌绪. 中国腐蚀与防护学报, 1981; 1: 49)
[25] Goebel J A, Pettit F S.Metall Trans, 1970; 1: 1943
[26] Beltran A M. Superalloys II. New York: Wiley, 1987: 135
[27] Chao J H, Kim T W, Son K S.Met Mater Int, 2003; 9: 303
[1] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[2] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[3] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[4] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[5] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[6] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[7] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[8] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[9] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[10] 牛志伟,叶政,刘凯凯,黄继华,陈树海,赵兴科. Al-Si-Ge钎料钎焊Cu/Al接头组织与性能研究[J]. 金属学报, 2017, 53(6): 719-725.
[11] 孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
[12] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[13] 江智,田艳红,丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理*[J]. 金属学报, 2016, 52(1): 105-112.
[14] 左勇, 马立民, 刘思涵, 舒雨田, 郭福. 通过添加POSS颗粒抑制锡基无Pb焊层的晶须生长*[J]. 金属学报, 2015, 51(6): 685-692.
[15] 肖旋,赵海强,王常帅,郭永安,郭建亭,周兰章. B和P对GH984合金组织和力学性能的影响[J]. 金属学报, 2013, 29(4): 421-427.