Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 95-102    DOI: 10.3724/SP.J.1037.2013.00210
  论文 本期目录 | 过刊浏览 |
Ce-Cu共掺杂对SnO2薄膜光电特性的影响*
单麟婷, 巴德纯(), 曹青, 侯雪艳, 李建昌
东北大学真空与流体工程研究中心, 沈阳 110819
EFFECT OF Ce-Cu CODOPING ON OPTOELECTRONIC PROPERTY OF SnO2 FILM
SHAN Linting, BA Dechun(), CAO Qing, HOU Xueyan, LI Jianchang
Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang 110819
引用本文:

单麟婷, 巴德纯, 曹青, 侯雪艳, 李建昌. Ce-Cu共掺杂对SnO2薄膜光电特性的影响*[J]. 金属学报, 2014, 50(1): 95-102.
Linting SHAN, Dechun BA, Qing CAO, Xueyan HOU, Jianchang LI. EFFECT OF Ce-Cu CODOPING ON OPTOELECTRONIC PROPERTY OF SnO2 FILM[J]. Acta Metall Sin, 2014, 50(1): 95-102.

全文: PDF(9054 KB)   HTML
摘要: 

采用溶胶凝胶法制备不同Ce含量的Ce-Cu共掺杂SnO2薄膜, 通过实验及第一性原理计算研究了掺杂对SnO2微观结构及光电特性的影响. 结果表明, 掺杂后薄膜物相未发生较大变化, Cu, Ce均以替代Sn位形式掺入, 形成C u S n 2 + ,C e S n 3 + 受主型缺陷. 随Ce掺杂浓度增加, 薄膜晶粒尺寸和光学带隙均减小, 电阻率先减小后增大, Ce掺杂量影响薄膜内陷阱分布从而导致电阻发生改变. PL光谱测试发现, SnO2在390 nm处出现紫外发光峰, 主要与O空位有关, Ce3+的5d→4f跃迁在470 nm处产生蓝光发光峰, 且随掺杂浓度增加发光峰强度先增大后减小并发生红移. 第一性原理计算表明, Cu 3d态在价带顶上方产生受主能级, 而Ce掺杂后使导带整体下移, 光带隙减小, 进而提高导电性.

关键词 Ce-Cu共掺杂SnO2溶胶凝胶法光电特性第一性原理    
Abstract

Tin dioxide (SnO2) is a wide band gap semiconductor. SnO2 has recently received a large interest because of its multiple technological applications, including solar cells, optoelectronic devices, flat panel displays, gas sensors, architectural windows and catalysts, owing to its good optical and electrical properties and excellent chemical and thermal stability. Compared to traditional materials which based on sulfur compound, rare earth elements doped oxides possess obvious advantages, such as good chemical stability, high transparency in the range of visible light, and nontoxic. In this work, the Ce-Cu codoping of SnO2 thin films were prepared by sol-gel method. The influence of Ce-Cu codoping on the microstructural and optoelectrical properties has been investigated. Both Cu and Ce dopants are incorporated at substitutional sites (C u S n 2 + , C e S n 3 + ), acting as the acceptors. With increasing the Ce content, the film grain size and optical band gap decrease, while the resistivity decreases at first and then increases due to the change of spatial trap distribution. The ultraviolet peak of the films can be attributed to the oxygen vacancies, while the blue emission at 470 nm belongs to the electron transition between 5d excited state and 4f state of Ce3+ ion. Besides, the intensity of the visible emission peak is influenced by the Ce content. The band structure, density of states of SnO2, intrinsic and doped separately with Cu and Ce were investigated by first-principles full potential linearized augmented plane wave method. The Ce-Cu co-dopants make the conduction band shift down and induce a fully occupied impurity band above the valance band, and 4f orbital of Ce inserts into the conduction band, which leads the shift of the bottom of the conduction band to lower energy zone and narrowing of band gap, thus the band gap is decreased and the conductivity is improved.

Key wordsCe-Cu codoped SnO2    sol-gel method    photoelectric characteristics    first-principles
收稿日期: 2013-04-23     
ZTFLH:  O472  
基金资助:* 中央高校基本科研业务费专项资金资助项目N110403001
作者简介: null

单麟婷, 女, 1984年生, 博士生

图1  
Sample a=b / nm c / nm Volume / nm3 Grain size / nm
Pure 0.4737 0.3185 0.07147 7.6
1%Cu 0.4736 0.3184 0.07143 7.4
0.5%CeCu 0.4737 0.3186 0.07151 6.6
1%CeCu 0.4751 0.3197 0.07215 6.1
3%CeCu 0.4738 0.3187 0.07155 5.4
5%CeCu 0.4755 0.3199 0.07234 3.7
7%CeCu 0.4746 0.3193 0.07191 3.4
  
图2  
图3  
图4  
图5  
Sample Resistivity / (103 Ωcm) Carrier mobility / (cm2 V-1s-1)
Pure 1.75 162.15
1%Cu 9.02 2.14
0.5%CeCu 8.05 54.60
1% CeCu 7.91 46.65
3%CeCu 2.43 171.35
5%CeCu 6.54 1.35
7%CeCu 14.69 2.45
  
图6  
[1] Coutts T J, Young D L, Li X, Mulligan W P, Wu X.J Vac Sci Technol, 2000; 18: 2646
[2] Svance A, Antoncik J E.Phys Chem Solids, 1987; 48: 171
[3] Harrison P G, Willett M J.Nature, 1988; 332: 337
[4] Dolbec R, Khakani M A, Serventi A M, Trudeau M, Saint-Jacques R G. Thin Solid Films, 2001; 419: 230
[5] Ellmer K.Nat Photonics, 2012; 282: 809
[6] Ji Z G, He Z J, Song Y L.Acta Phys Sin, 2003; 53: 4330
[6] (季振国, 何振杰, 宋永梁. 物理学报, 2003; 53: 4330)
[7] Huang J Y, Fan G H, Zheng S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y.Chin Phys, 2010; 19B: 047205
[8] Rockenberger J, Zum Felde U, Tischer M, Troger L, Haase M, Weller H. J Chem Phys, 2000; 112: 4296
[9] Jung Y S, Choi Y W, Lee D W.Thin Solid Films, 2003; 440: 278
[10] Coey M D, Douvalis A P, Fitzgerald C B, Venkatesan M.Appl Phys Lett, 2004; 84: 1332
[11] Ghimbeu C M, Lumbreras M, Schoonman J, Siadat M.Sensors, 2009; 9: 9122
[12] Li Y F, Deng R, Tian Y F, Yao B, Wu T.Appl Phys Lett, 2012; 100: 172402
[13] Chang S S, Jo M S.Ceram Int, 2007; 33: 511
[14] Liu Y K, Tian Y, Feng Y J, Wu X W, Han X G. JInorg Mater, 2008; 23: 891
[14] (刘延坤, 田 言, 冯玉杰, 武晓威, 韩霞光. 无机材料学报, 2008; 23: 891)
[15] Chen S, Zhao X R, Xie H Y, Liu J M, Duan L B, Ba X J, Zhao J L.Appl Surf Sci, 2012; 258: 3255
[16] Gu F, Wang S F, Lv M K, Zhou G J, Xu D, Yuan D R. J Phys Chem, 2012; 108B: 8119
[17] Yamamoto T, Katayama Y H. Physica, 2001; 302B: 155
[18] Han X B. Master Thesis, Northeastern University, Shenyang, 2010
[18] (韩晓波. 东北大学硕士学位论文, 沈阳, 2010)
[19] Ghimbeu C M, Van Landschoot R C, Schoonman J, Lumbreras M, Antoncik J E.J Eur Ceram Soc, 2007; 27: 207
[20] Lun N, Hu C X, Wu Y S.J Shandong Univ, 2003; 33: 605
[20] (伦 宁, 胡春霞, 吴佑实. 山东大学学报, 2003; 33: 605)
[21] Oadri S B, Yang J P, Skelton E F, Ratna B R.Appl Phys Lett, 1997; 70: 1020
[22] Williamson G K, Hall W H.Acta Metall, 1953; 1: 22
[23] Kissine V V, Voroshilov S A, Sysoev V V.Thin Solid Films, 1999; 384: 304
[24] Liu S X,Liu H. The Basis and Application of Photocatalysis and Photoelectrocatalysis. Beijing: Chemical Industry Press, 2006: 21
[24] (刘守新,刘 鸿.光催化及光电催化基础与应用. 北京: 化学工业出版社, 2006: 21)
[25] Yan J K, Gan G Y, Chen H F, Zhang X W, Sun J L.Semiconductor Technol, 2007; 32: 109
[25] (严继康, 甘国友, 陈海芳, 张小文, 孙加林. 半导体技术, 2007; 32: 109)
[26] Terrier C, Chatelon J P, Roger J A.Thin Solid Films, 2007; 295: 95
[27] Zhang B Y, Yao B, Li Y F, Zhang Z Z, Li B H, Shan D X, Shen D Z.Appl Phys Lett, 2007; 97: 222101
[28] Kim T W, Lee D U, Yoon Y S.J Appl Phys, 2000; 88: 3759
[29] Peng Z J, Yang Y Y, Wang C B, Fu Z Q.Acta Metall Sin, 2008; 10: 1265
[29] (彭志坚, 杨义勇, 王成彪, 付志强. 金属学报, 2008; 10: 1265)
[30] Dexter D L, Schulman J H. J Chem Phys, 1954; 22: 1063
[31] Cheng B C, Xiao Y H, Wu G S, Zhang L D.Adv Funct Mater, 2004; 14: 913
[32] Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J.Appl Phys Lett, 2008; 92: 200110
[33] Oduor A O, Gould R D.Thin Solid films, 1998; 317: 409
[34] Burrows P E, Shen Z, Bulovic V, McCarty D M, Forrest S R, Cronin J A, Thompson M E.J Appl Phys, 1996; 79: 7991
[35] Talin A A, Leonard F, Swartzentruber B S, Wang X, Hersee S D.Phys Rev Lett, 2008; 101: 076802
[1] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[2] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[3] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[4] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[5] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[6] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[7] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[8] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[9] 盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳. 合金化元素对W-Cu体系多类界面特征影响的第一性原理计算[J]. 金属学报, 2020, 56(7): 1036-1046.
[10] 高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
[11] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[12] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[13] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[14] 崔荣华, 王歆钰, 董正超, 仲崇贵. Mg1-xZnx合金的弹性和热力学性质的第一性原理研究[J]. 金属学报, 2017, 53(9): 1133-1139.
[15] 陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.