Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 769-774    DOI: 10.3724/SP.J.1037.2013.00206
  论文 本期目录 | 过刊浏览 |
低合金马氏体钢中的ω
平德海1),殷匠2),刘文庆3),宿彦京4),戎利建5),赵新青6)
1) 中国石油大学(北京)材料科学与工程系,北京 102249
2) 江苏亚星锚链股份有限公司, 靖江 214533
3) 上海大学微结构重点实验室, 上海200444
4) 北京科技大学材料科学与工程学院, 北京 100083
5) 中国科学院金属研究所, 沈阳 110016
6) 北京航空航天大学材料科学与工程学院, 北京
100191
THE ω PHASE IN A LOW ALLOY MARTENSITIC STEEL
PING Dehai1), YIN Jiang2), LIU Wenqing3), SU Yanjing4), RONG Lijian5), ZHAO Xinqing 6)
1) Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249
2) Jiangsu Asian Star Anchor Chain Co. Ltd., Jingjiang
3) Key Laboratory for Microstructure,Shanghai University, Shanghai 200444
4) School of Materials Science and Engineering, University of Science and
Technology Beijing, Beijing 100083
5) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
6) School of Materials Science and Engineering, Beihang University, Beijing 100191
全文: PDF(4567 KB)  
摘要: 

利用TEM研究了一种低合金钢中马氏体的微结构.研究发现,淬火态的马氏体由铁素体基体和弥散于基体中的高密度纳米小颗粒组成,这种小颗粒的晶体结构可标定为六角结构的ω. ω相与铁素体基体(α-Fe)的取向关系为: [113]α//[2113]ω,(110)α //(1101)ω和(211)α//(0110)ω,点阵常数aω=21/2aα , cω=31/2/2aα.马氏体中的C原子呈非均匀分布, 铁素体基体具有很低的C含量,合金中的C原子主要富集在ω相中.

关键词 马氏体ωC微观结构TEM    
Abstract

The microstructure of a low alloy martensitic steel has been investigated using TEM. It was indicated that the as-quenched plate and lath martensites consist of ferrite matrix and high density of nanometer-scaled ultrafine particles embedded in the matrix. These particles were designated to beω phase with a primitive hexagonal crystal structure. Theω particles exhibit an orientation relationship with the ferrite (α-Fe) matrix as follows: [113]α//[2113]ω,(110)α //(1101)ω and (211)α//(0110)ω, with lattice parameters of aω=21/2aα , cω=31/2/2aα. The results of the present study suggested that the carbon atoms in the steel are not homogenously distributed in the martensites. The ferrite matrix possesses very low content of carbon, and most of the carbon atoms are concentrated in the ω phase.

Key wordsMartensite    &omega    phase    C    microstructure    TEM
收稿日期: 2013-04-23      出版日期: 2013-07-11
基金资助:

国家自然科学基金项目 51271200和51271010资助

通讯作者: 赵新青     E-mail: xinqing@buaa.edu.cn
作者简介: 平德海,男, 1964年生, 教授

引用本文:

平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω相[J]. 金属学报, 2013, 49(7): 769-774.
PING Dehai, YIN Jiang, LIU Wenqing, SU Yanjing, RONG Lijian, ZHAO Xinqing. THE ω PHASE IN A LOW ALLOY MARTENSITIC STEEL. Acta Metall Sin, 2013, 49(7): 769-774.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00206      或      http://www.ams.org.cn/CN/Y2013/V49/I7/769

[1] Frost P D, Parris W M, Hirsch L L, Doig J R, Schwartz C M.Trans Am Soc Met , 1954; 46: 231
[2] Hatt B A, Roberts J A, Williams G I. Nature, 1957; 180: 1406
[3] Sikka S K, VohraY K, ChidambaramR. Prog Mater Sci,1982; 27: 245
[4] Al-Zain Y, Kim H Y, Koyano T, Hosoda H, Namc T H, MiyazakiS. Acta Mater, 2011; 59: 1464
[5] Cui C Y, Ping D H. J Alloys Compd, 2009; 471: 248
[6] Lutjering G, Williams J C. Titanium. 2nd Ed.,Berlin: Springer-Verlag, 2007: 15
[7] Hatt B A, Roberts J A. Acta Metall, 1960; 8: 575
[8] Shao G, Tsakiropoulos P. Acta Mater, 2000; 48:3671
[9] Yedneral A F, Perkas M D. Phys Met Metall, 1972;33: 89
[10] Burakovsky L, Chen S P, Preston D L, Belonoshko A B,Mikhaylushkin A S, Simak S I, Moriarty J A. Phys Rev Lett, 2010; 104: 255702
[11] Cheng G M, Yuan H, Jian W W, Xu W Z, Millett P C, Zhu Y T.Scr Mater, 2013; 68: 130
[12] Baker H. Alloy Phase Diagrams. ASM Handbook, Vol.3, Washington D.C.: ASM International, 1992: 527
[13] Lee H Y, Yen H W, Chang H T, Yang J R. Scr Mater,2010; 62: 670
[14] Leslie W C, Hornbogen E. In: Cahn R W, Haasen P eds., Physical Metallurgy. 4th Ed, Amsterdam: Elsevier Science B V,1996: 1555
[15] Bhadeshia H K D H, Honeycombe S R. Steel Microstructure and Properties. 3rd Ed, Amsterdam: Elsevier, 2006: 1
[16] Lerchbacher C, Zinner S, Leitner H. Micron, 2012; 43: 818
[17] Ping D H, Geng W T. Mater Chem Phys, 2013; 139:830
[18] Nuttall K, Faulkner D. J Nucl Mater, 1977; 67:131
[19] Banerjee S, Mukhopadhyay P. Phase Transformations:Examples from Ti and Zr Alloys. Amsterdam: Elsevier, 2007: 473
[1] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[2] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.
[3] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[4] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[5] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[6] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[7] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[8] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[9] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[10] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[11] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[12] 王菲,王恩刚,贾鹏,王韬,邓安元. 电磁连铸对Incoloy800H合金铸坯内TiN分布和内裂纹的影响[J]. 金属学报, 2017, 53(1): 97-106.
[13] 戎咏华,陈乃录. C同时提高马氏体钢强度和塑性的原理和机制[J]. 金属学报, 2017, 53(1): 1-9.
[14] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[15] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.