II. Model Verification and Experimental Analysis" /> DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律：II. 模型验证及实验分析
 论文 本期目录 | 过刊浏览 |
DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律：II. 模型验证及实验分析

1)北京科技大学材料科学与工程学院, 北京 100083
2)钢铁研究总院, 北京 100083)
ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFUSION BONDING UNDER HOT ISOSTATIC PRESSURE
II. Model Verification and Experimental Analysis
YAO Yao1), DONG Jianxin1), YAO Zhihao1), ZHANG Maicang1),GUO Weimin2)
1)School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2)Central Iron & Steel Research Institute, Beijing 100081
 全文: PDF(8217 KB)

DD407/FGH95合金系进行了1120℃/120 MPa/3 h, 1170℃/120 MPa/3 h和1210℃/120 MPa/3 h 3个工艺参数下的热等静压扩散连接实验, 实验分析互扩散区元素分配规律与计算结果基本吻合,验证了利用DICTRA与Thermal－Calc软件结合计算扩散连接界面元素分布情况的准确性.进而给出了利用元素和相分布模拟结果对实验进行预测的依据,提出扩散连接温度应在1170－1200℃之间选择, 可避免界面大γ′相出现.结合理论计算和实验分析, 建立了粉末高温合金与单晶高温合金HIP扩散连接工艺选择原则.

Abstract

Manufacturing dual superalloy turbine rotor is becoming an important direction of development in the field of aviation and aerospace. In order to improve working temperature and service life of turbine rotor, blade materials have been evolved to single crystal superalloys, turbine disc materials have also been developed to powder superalloys. Therefore the connection of these two materials has become key problem in improving turbine performance. Nowadays hot isostatic pressure (HIP) bonding is a preferable bonding technique due to no fusion and macroscopic deformation in bonding area. In HIP bonding process, elements diffusion is the key factor in forming microstructure of interface, and determining interfacial properties. At present, articles about HIP diffusion bonding mainly focused on interfacial microstructure and mechanical test of bonding couples, while few articles explored the relationship between elements diffusion and microstructure forming. In this work, diffusion couples of DD407 and FGH95 alloys were conducted under 1120, 1170, 1210℃ and 120 MPa HIP for 3 h, the microstructure and elements distribution of interface were studied to verify simulated results in the last article, and explore interface formation mechanism. Then the relationship between simulated phase distribution and actual microstructure of interface was built, which can be used to forecast interface morphology. And also the recrystallization in bonding zone was studied. Combining simulated and experimental results, this work put forwards principles for HIP bonding process controlling.

Key wordsDD407/FGH95 alloy    morphology    diffusion bonding    hot isostatic pressure

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert RSS 作者相关文章 姚瑶 董建新 姚志浩 张麦仓 国为民 44.8K

#### 引用本文:

YAO Yao, DONG Jianxin, YAO Zhihao, ZHANG Maicang,GUO Weimin. ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFUSION BONDING UNDER HOT ISOSTATIC PRESSURE

II. Model Verification and Experimental Analysis
. Acta Metall Sin, 2013, 49(9): 1051-1060.

#### 链接本文:

 [1] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Sci Technol Weld Joining, 2010; 15:194 [2] Atkinson H V, Davies S. Metall Mater Tans, 2000; 31A: 2981 [3] Wang X F, Ma M, Liu X B, Wu X Q, Tan C G, Shi R K, Lin J G. Trans Nonferrous Met Soc China,2006; 16: 1059 [4] Wu H Y, Lee S Y, Wang J Y. J Mater Process Technol, 1998; 75: 173 [5] Dong J X, He D, Zhang M C, Zeng Y P. J Univ Sci Technol Beijing, 2003; 25: 36 (董建新, 何冬, 张麦仓, 曾燕屏. 北京科技大学学报. 2003; 25: 36) [6] Rees M, Hurst R C, Parker J D. J Mater Sci, 1996; 31: 4493 [7] Watanabe M, Horita Z, Smith D J, Mcartnry M R, Sano T, Nemoto M. Acta Metall Mater,1994; 42: 3381 [8] Watanabe M, Horita Z, Sano T, Nemoto M. Acta Metall Mater, 1994; 42: 3389 [9] Yan L C, Sun J H, Dong D J, Zhao J C, Yan P. J Univ Sci Technol Beijing, 2001; 23: 53 (闫来成, 孙家华, 董德俊, 赵京晨, 燕平. 北京科技大学学报, 2001; 23: 53) [10] Ashworth M A, Jacobs M H, Davies S. Mater Des, 2000; 21: 351 [11] Yao Y, Ye J S, Dong J X, Yao Z H, Zhang M C, Guo W M. Acta Metall Sin,2013; 49: 1041 (姚瑶, 叶建水, 董建新, 姚志浩, 张麦仓, 国为民. 金属学报, 2013; 49: 1041) [12] Porter D A, Easter K E, translated by Li C H, Yu Y N. Phase Transformation in Metals and Alloys.Beijing: Metallurgical Industry Press, 1988: 177 (Porter D A, Easter K E著, 李长海, 余永宁~译. 金属和合金中的相变. 北京: 冶金工业出版社, 1988: 177) [13] Jia J, Tao Y, Zhang Y W, Zhang Y. J Aeronaut Mater, 2008; 28: 20 (贾建, 陶宇, 张义文, 张莹. 航空材料学报, 2008; 28: 20) [14] Cheng K Y, Jo C Y, Jin T, Hu Z Q. Mater Des, 2010; 31: 968 [15] Matan N, Cox D C, Rae C M F, Reed R C. Acta Mater, 1999; 47: 2031 [16] Pollock T M, Argon A S. Acta Metall Mater, 1994; 42: 1859 [17] Cheng K Y, Jo C Y, Kim D H, Jin T, Hu Z Q. Mater Charact, 2009; 60: 210 [18] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Acta Metall Sin, 1998; 34: 591 (田素贵, 周惠华, 张静华, 杨洪才, 徐永波, 胡壮麒. 金属学报, 1998: 34: 591) [19] Danersi W P, Donachia M J, Radavich J F. ASM Trans Quart, 1966; 59: 505 [20] Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323 [21] Yoo Y S. Scr Mater, 2005; 53: 81 [22] Schwarz S M, Kempshal1 B W, Giannuzzi L A. Acta Mater, 2003; 51: 2765 [23] Yu Y Q, Yao Z K. Acta Metall Sin, 2012; 48: 1005 (余永权, 姚泽坤. 金属学报, 2012; 48: 1005) [24] Xu Z W, Ruan Z J, Zhang G L, Huang Z. Weld Technol, 2003; 32: 8 (徐子文, 阮中健, 张桂林, 黄正.焊接技术, 2003; 32: 8) [25] Nathal M V. Matall Trans, 1987; 18: 1961
 [1] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135. [2] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625. [3] 姚瑶,叶建水,董建新,姚志浩,张麦仓,国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建[J]. 金属学报, 2013, 49(9): 1041-1050. [4] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254. [5] 翟阳;任家烈;庄丽君;曹余庆;孙李军. 用非晶态合金作中间层扩散连接Si_3N_4与40Cr钢的研究[J]. 金属学报, 1995, 31(21): 423-428.