Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 675-681    DOI: 10.3724/SP.J.1037.2013.00090
  论文 本期目录 | 过刊浏览 |
工业纯Ti在模拟高放废物地质处置环境中的缝隙腐蚀行为
魏欣1,2),董俊华2),柯伟2)
1) 大连理工大学材料科学与工程学院, 大连 116024
2) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
 
CREVICE CORROSION OF GRADE-2 Ti IN SIMULATED GROUNDWATER FOR GEOLOGICAL DISPOSAL OF HIGH-LEVEL RADIOACTIVE NUCLEAR WASTE
WEI Xin1,2), DONG Junhua2), KE Wei2)
1) College of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

魏欣,董俊华,柯伟. 工业纯Ti在模拟高放废物地质处置环境中的缝隙腐蚀行为[J]. 金属学报, 2013, 49(6): 675-681.
WEI Xin, DONG Junhua, KE Wei. CREVICE CORROSION OF GRADE-2 Ti IN SIMULATED GROUNDWATER FOR GEOLOGICAL DISPOSAL OF HIGH-LEVEL RADIOACTIVE NUCLEAR WASTE[J]. Acta Metall Sin, 2013, 49(6): 675-681.

全文: PDF(2827 KB)  
摘要: 

采用动电位极化曲线、电化学阻抗谱、电偶电流监测及恒电位极化等电化学方法研究了温度和Cl-浓度对Grade-2 Ti在模拟高放废物处置环境中缝隙腐蚀行为的影响.结果表明, 浸泡初期, 带缝隙Ti电极在25-95℃时均呈现钝化特征.随浸泡时间延长, 缝隙内介质环境侵蚀性增强, 诱发Ti缝隙腐蚀. 随着温度的升高和Cl-浓度的增加,电偶电流增大, Ti的耐缝隙腐蚀性能下降. Ti缝隙腐蚀各阶段转变的临界温度随着Cl-浓度和外加电位的增加而降低.由于发生阳极活性溶解, 缝隙口处金属被严重破坏.

关键词 高放废物Ti缝隙腐蚀温度    
Abstract

The influences of temperature and Cl- concentration on the crevice corrosion of grade-2 Ti in the simulated geological disposal environment of high-level radioactive nuclear waste were investigated by potentiodynamic polarization curves, electrochemical impedance spectroscopy, galvanic current monitoring and potentiostatic polarization. The results showed that all the creviced specimens exhibited the passive characteristics in the initial immersion period at 25-95℃. With extending the immersion time, the crevice corrosion of Ti initiated as a result of the gradual aggressive environment (higher Cl- concentration and more acidification) in the crevice. As increasing the temperature and Cl- concentration, the galvanic current increased and the crevice corrosion resistance was decreased. In addition, the critical temperature of crevice corrosion decreased with increasing Cl- concentration and the applied potential. The damage caused by anodic active dissolution in the crevice mainly located near the crevice mouth.

Key wordshigh-level radioactive waste    Ti    crevice corrosion    temperature
收稿日期: 2013-02-21     
基金资助:

国家自然科学基金资助项目51071160

作者简介: 魏欣, 男, 1982年生, 博士生

[1] Lee S G, Solomon A A. Mater Sci Eng, 2006; A434: 114

[2] Su R, Cheng Q F, Wang J, Zhao H G, Guo Y H, Chen W M, Jin Y X. World Nucl Geosci, 2011; 28: 45
(苏锐, 程琦福, 王驹, 赵宏刚, 郭永海, 陈伟明, 金远新. 世界核地质科学, 2011; 28: 45)
[3] Wang J, Chen W M, Su R, Guo Y H, Jin Y X. Chin J Rock Mech Eng, 2006; 25: 649
(王驹, 陈伟明, 苏锐, 郭永海, 金远新. 岩石力学与工程学报, 2006; 25: 649)
[4] Bennett D G, Gens R. J Nucl Mater, 2008; 379: 1
[5] Rempe N T. Prog Nucl Energy, 2007; 49: 365
[6] Chapman N, Hooper A. Proc Geologist Assoc, 2012; 123: 46
[7] Feron D, Crusset D, Gras J M. J Nucl Mater, 2008; 379: 16
[8] Johnson L H, Shoesmith D W, Ikeda B M, King F. Mater Res Soc Symp Proc, 1992; 257: 439
[9] Shoesmith D W, Hocking W H, Ikeda B M, King F, No$\ddot{\rm e$l J J, Sunder S. Can J Chem, 1997; 75: 1566
[10] Nakayama G, Sakakibara Y, Taniyama Y, Cho H, Jintoku T, Kawakami S, Takemoto M. J Nucl Mater, 2008; 379: 174
[11] Nishimura T. J Nucl Mater, 2009; 385: 495
[12] He X, Noel J J, Shoesmith D W. J Electrochem Soc, 2002; 149: B440
[13] Mckay P, Mitton D B.  Corrosion, 1985; 41: 52
[14] He X, Noel J J, Shoesmith D W. Corrosion, 2004; 60: 378
[15] Tsujikawa S, Kojima Y. Mater Res Soc Symp Proc, 1991; 212: 261
[16] Tsujikawa S, Kojima Y. Mater Res Soc Symp Proc, 1993; 294: 311
[17] Yan L, Noel J J, Shoesmith D W. Electrochim Acta, 2011; 56: 1810
[18] Yokoyama K, Ogawa T, Asaoka K, Sakai J. Mater Sci Eng, 2004; A384: 19
[19] Nishimura R, Shirono J, Jonokuchi A. Corros Sci, 2008; 50: 2691
[20] Abdulsalam M I. J Mater Eng Perform, 2007; 16: 736
[21] Kennell G F, Evitts R W, Heppner K L. Corros Sci, 2008; 50: 1716
[22] Rajendran N, Nishimura T. Mater Corros, 2007; 58: 334
[23] Han D, Jiang Y M, Shi C, Deng B, Li J. J Mater Sci, 2012; 47: 1018
[24] Han D, Jiang Y M, Deng B, Zhang L, Gao J, Tan H, Li J. Corrosion, 2011; 67: 025004-1
[25] Pickering H W. Corros Sci, 1989; 29: 325
[26] Al-Zahrani A M, Pickering H W. Electrochim Acta, 2005; 50: 3420
[27] Yan M C, Weng Y J. J Chin Soc Corros Prot, 2004; 24: 95
(闫茂成, 翁永基. 中国腐蚀与防护学报, 2004; 24: 95)
[28] Heppner K L, Evitts R W, Postlethwaite J.J Electrochem Soc, 2005; 152: B89
[29] Brigham R J.Corros Sci, 1992; 33: 799
[30] Brigham R J.Corros Sci, 1988; 28: 57
[31] Pickering H W. J Electrochem Soc, 2003; 150: K1
[1] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[4] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[5] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[8] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[9] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[10] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[13] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.