Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 871-880    DOI: 10.3724/SP.J.1037.2013.00052
  论文 本期目录 | 过刊浏览 |
钢圆坯连铸过程中渐开式电磁旋流水口数值模拟
李德伟,苏志坚,陈进,王强,丸川雄净,赫冀成
东北大学材料与冶金学院, 沈阳 110819
NUMERICAL SIMULATION OF SWIRLING FLOW IN DIVERGENT SUBMERGED ENTRY NOZZLE IN ROUND BILLET CONTINUOUS CASTING OF STEEL
LI Dewei, SU Zhijian, CHEN Jin, WANG Qiang, MARUKAWA Katsukiyo, HE Jicheng
School of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

李德伟,苏志坚,陈进,王强,丸川雄净,赫冀成. 钢圆坯连铸过程中渐开式电磁旋流水口数值模拟[J]. 金属学报, 2013, 49(7): 871-880.
LI Dewei, SU Zhijian, CHEN Jin, WANG Qiang, MARUKAWA Katsukiyo, HE Jicheng. NUMERICAL SIMULATION OF SWIRLING FLOW IN DIVERGENT SUBMERGED ENTRY NOZZLE IN ROUND BILLET CONTINUOUS CASTING OF STEEL[J]. Acta Metall Sin, 2013, 49(7): 871-880.

全文: PDF(9056 KB)  
摘要: 

提出了一种新的浸入式水口内产生旋流的方法, 即在水口外施加可移动的旋转电磁场,非接触地形成钢液旋流. 为进一步发挥旋流作用, 采用渐开式水口,对圆坯连铸中浸入式水口及结晶器内钢液流场、温度场进行了三维数值模拟,并重点研究了水口渐开角度结合不同旋流强度对结晶器内流场及温度场的影响.研究结果表明, 浸入式水口内磁场和旋流速度随着线圈电流强度的增加而增加.当电流强度为500 A, 频率为50 Hz时, 可产生最大为3 m/s左右的旋流速度.当水口采用同一渐开角度, 随着旋流强度的增大, 水口出流的冲击深度减小,上返流增强, 弯月面温度提高. 但当旋流强度增大到一定程度后,结晶器内弯月面附近温度变化不大. 采用同一旋流强度, 随着水口渐开角度的增加,结晶器内水口出口上方的上返流先增强后减弱, 在渐开角度为60℃时, 上返流最强.同样, 弯月面附近温度也是先提高后有所降低, 在渐开角度为60℃时, 弯月面温度最高.水口渐开角度为60℃, 线圈电流350 A, 频率为50 Hz时,在水口入口处施加0.5 m/s水平速度的人工偏流后, 电磁旋流能对该偏流进行有效的抑制.

关键词 连铸电磁旋流浸入式水口结晶器数值模拟    
Abstract

With the development of continuous casting technology, the quality of billet has been paid more and more attention recently. It is very important in continuous casting to strictly control the cleanliness of molten steel, and to reduce the defects of billet. The control of flow pattern of molten steel in mold is one of the important means to increase casting efficiency and improve billet quality. Swirling flow in the submerged entry nozzle (SEN) has great effect on improving the uniformity and stability of the outflow from the nozzle in continuous casting of steel process. A new process for swirling flow generation in the SEN has been proposed. That is a rotating electromagnetic field is set up around the SEN to induce swirling flow in it by Lorentz force. In this research, the flow and temperature fields in the SEN and round billet mold with electromagnetic swirling are numerically simulated. The effects of the divergent angle of the SEN with electromagnetic swirling on the flow and temperature fields in the mold are investigated. The simulated results show that, with the increase of the coil current intensity, the magnetic flux density and the swirling flow velocity in the SEN increases. The largest swirling flow velocity in the SEN can reach about 3 m/s in coil current intensity 500 A, frequency 50 Hz. In a divergent angle of the SEN, such as 60℃, when the coil current intensity increases, the impinging depth of the outflow from the nozzle reduces, the upward flow velocity and the meniscus temperature increase. While the coil current intensity increases larger than 350 A, the meniscus temperature changes little. In a certain intensity of swirling flow, such as 350 A, 50 Hz, when the divergent angle of the SEN increases, the upward flow velocity and the meniscus temperature firstly increase and then decrease. In divergent angle 60℃, the upward flow velocity and meniscus temperature get the largest value. In a divergent angle 60℃, coil current intensity 350 A, frequency 50 Hz, with an artificial uneven flow of  0.5 m/s horizontal velocity at the inlet of the SEN,the uneven flow can be suppressed effectively.

Key wordscontinuous casting    electromagnetic swirling flow    submerged entry nozzle    mold    simulation
收稿日期: 2013-01-25     
基金资助:

中央高校基本科研业务费项目N100409010, 高等学校学科创新引智计划项目B07015和辽宁省高校重点实验室支持计划项目

作者简介: 李德伟, 男, 1982年生, 博士生

[1] Yokoya S, Asako Y, Hara S, Szekely J.  ISIJ Int, 1994; 34: 883

[2] Takagi S, Yokoya S, Iguchi M, Hara S.  ISIJ Int, 1997; 10: 809
[3] Yokoya S, Takagi S, Iguchi M, Asako Y, Westoff R, Hara S.  ISIJ Int, 1998; 38: 827
[4] Yokoya S, Takagi S, Iguchi M, Marukawa K, Yasugaira W, Hara S.  ISIJ Int, 2000; 40: 584
[5] Kholmatov S, Takagi S, Jonsson L, Jonsson P, Yokoya S.  ISIJ Int, 2007; 47: 80
[6] Tsukaguchi Y, Nakamura O, Jonsson P, Yokoya S, Tanaka T, Hara S.  ISIJ Int, 2007; 47: 1436
[7] Jia H H, Yu Z, Lei Z S, Deng K, Chen J C, Hua W J, Ren Z M.  Acta Metall Sin, 2008; 44: 375
(贾洪海, 于湛, 雷作胜, 邓康, 陈家昶, 华文杰, 任忠鸣. 金属学报, 2008; 44: 375)
[8] Cui X C, Liu Z C, Tian X M, Lin J B.  Spec Steel, 2005; 26: 6
(崔小朝, 刘梓才, 田新明, 林金保. 特殊钢, 2005; 26: 6)
[9] Jia H H.  Master Thesis, Shanghai University, 2008
(贾洪海. 上海大学硕士学位论文, 2008)
[10] Tsukaguchi Y, Hayashi H, Yokoya S, Tanaka T, Hara S.  Tetsu Hagan$\acute{e$, 2007; 93: 575
(塚口友一, 林浩~史, 横谷真一郎, 田中敏宏, 原茂太. 鉄と鋼, 2007; 93: 575)
[11] Tsukaguchi Y, Hayashi H, Kurimoto H, Yokoya S, Marukawa K, Tanaka T.  Tetsu Hagane, 2009; 95: 33
(塚口友一, 林浩史, 栗本英典, 横谷真一郎, 丸川雄净, 田中敏宏. 鉄と鋼, 2009; 95: 33)
[12] He J C, Katsukiyo M, Su Z J.  Chin Pat, 200510047290.6, 2005
(赫冀成, 丸川雄净, 苏志坚. 中国专利, 200510047290.6, 2005)
[13] Shu Z J, Li D W, Sun L W, Katsukiyo M, He J C.  Acta Metall Sin, 2010; 46: 479
(苏志坚, 李德伟, 孙立为, 丸川雄净, 赫冀成.金属学报, 2010; 46: 479)
[14] Yoneyama Y, Takeuchi E, Matsuzawa K, Sawada I, Hattori Y, Kishida Y.Nippon Steel Tech Report, 1990; 45: 30
[15] Spitzer K H, Dubke M, Schwerdtfeger K.  Metall Trans, 1986; 17B: 119
[16] Thomas B G, Mika L J, Najjar F M.  Metall Trans, 1990; 21B: 387
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[8] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[9] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[10] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[12] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[13] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[14] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[15] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.