Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 667-674    DOI: 10.3724/SP.J.1037.2013.00035
  论文 本期目录 | 过刊浏览 |
Al和铝合金激光冲击表面改性的位错机制
罗新民1),陈康敏1,2),张静文1),鲁金忠3),任旭东3),罗开玉3),张永康4)
1) 江苏大学材料科学与工程学院, 镇江 212013
2) 江苏大学分析中心, 镇江 212013
3) 江苏大学机械工程学院, 镇江 212013
4) 东南大学机械工程学院, 南京 211189
DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING
LUO Xinmin1), CHEN Kangmin1,2), ZHANG Jingwen1), LU Jinzhong 3), REN Xudong 3),LUO Kaiyu3), ZHANG Yongkang4)
1) School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
2) Analysis and Test Center, Jiangsu University, Zhenjiang 212013
3) School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013
4) School of Mechanical Engineering, Southeast University, Nanjing 211189
引用本文:

罗新民,陈康敏,张静文,鲁金忠,任旭东,罗开玉,张永康. 纯Al和铝合金激光冲击表面改性的位错机制[J]. 金属学报, 2013, 49(6): 667-674.
LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong, REN Xudong, LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. Acta Metall Sin, 2013, 49(6): 667-674.

全文: PDF(4729 KB)  
摘要: 

用工业纯Al(α-Al)和Al-Cu-Mg系航空铝合金2A02进行了激光冲击表面改性实验,借助TEM从微结构响应的位错机制研究了不同靶材对强化效果的影响. 结果表明,2种材料的强化效果有显著差异. α-Al激光冲击强化机制可归因于位错增殖.随激光冲击次数增加, 新生位错发生塞积, 并与林位错发生交互作用,位错线逐步演变为曲折波形、位错网络和位错缠结,但其硬度曲线因Bauschinger效应(BE)和应力波阻尼而呈线性快速衰退.铝合金2A02的激光冲击强化机制可归结为,由于高的基体强度和弥散析出相的钉扎作用而增强位错的弹性能与激光冲击超高能量的匹配,以及冲击诱发的位错增殖在析出相之间形成的复杂位错网络. 随激光冲击次数增加,基体与析出相之间以增强的半共格关系协调形变;位错增殖和空位运动构成几何必须位错界面(GNBs),由其构成的亚晶界将基体金属细化至纳米级.复杂位错组态所致内应力和纳米化作用共同构成铝合金材料激光冲击表面改性的强化机理.

关键词 工业纯Al(α-Al)铝合金激光冲击表面改性位错微结构    
Abstract

Surface modification experiment of the commercial purity aluminum (α-Al) and Al-Cu-Mg alloyed aviation aluminum alloy 2A02 by laser shock processing (LSP) was implemented. The surface strengthening effect of both the target materials was investigated from dislocation mechanisms of microstructural response by means of TEM method. The results show that the strengthening effect of the two kinds of materials by laser shock processed is significantly different. The strengthening mechanism of α-Al by laser shock can be attributed to the multiplication of a large number of dislocations. With the increase of the impact number of laser shock and the degree of deformation, the new-generated dislocations will pile up and interact with the forest dislocations, and the dislocation lines will gradually evolve into waved-like, or wind into dislocation tangles and dislocation networks. But the hardness curve of the laser shocked (α-Al) will fast and linearly decline due to Bauschinger effect (BE) and stress wave damping. The laser shock strengthening mechanisms of the aging-hardened aluminum alloy 2A02 can be summarized to the enhancement of the matching between the elastic energy of dislocations with the ultra-high energy of laser shock processing due to the higher matrix strength and the dislocation-pinning effect of large number of dispersed precipitates, as well as the complex dislocation networks in between the precipitates constructed by the dislocations induced by laser shock. The matrix strengthened by laser shock processing and the precipitates keep the extra-semi-coherent relationship to coordinate the total deformation, with the number of laser shock increase, dislocation multiplication and the vacancy motion constitutes geometrically necessary boundaries (GNBs), which consists of the sub-grain boundaries to refine the matrix into the nanometer-grains. The strengthening mechanism of surface modification of aluminum alloy by laser shock processing is formed of the internal stress state caused by the combination of the complex dislocation configurations and the Hall-Petch effect of the nanocrystalline grains.

Key wordscommercial purity aluminum (α-Al)    aluminum alloy    laser shock processing    surface modification, dislocation    microstructure
收稿日期: 2013-01-24     
基金资助:

国家自然科学基金项目51275220, 51105179和50905080资助

作者简介: 罗新民, 男, 1951年生, 教授

[1] Lu J Z, Luo K Y, Zhang Y K, Cui C Y, Sun G F, Zhou J Z, Zhang L, You J,Chen K M, Zhong J W.  Acta Mater, 2010; 58: 3984

[2] Trdan U, Grum J, Hill M R.  Mater Sci Forum, 2011; 681: 480
[3] Montross C S, Wei T, Ye L, Clark G, Mai Y W.  Int J Fatigue, 2002; 24: 1021
[4] Clauer A H, Lahrman D F.  Key Eng Mater, 2001; 197: 121
[5] Zhou Z M.  Dislocation Configuration Evolution. Shenyang: Northeastern University Press, 2003: 60
 (周志敏. 位错组态演化. 沈阳: 东北大学出版社, 2003: 60)
[6] Luo X M, Ma H, Zhang J W, Zhang Y K.  Mater Rev, 2010; 24(5): 11
 (罗新民, 马辉, 张静文, 张永康. 材料导报, 2010; 24(5): 11)
[7] Guo N G, Luo X M, Hua Y Q.  Mater Rev, 2006; 20(6): 10
 (郭乃国, 罗新民, 花银群. 材料导报, 2006; 20(6): 10)
[8] Liang X B, Zhang Z B, Chen Y X, Xu B S.  Acta Metall Sin, 2012; 48: 289
 (梁秀兵, 张志彬, 陈永雄, 徐滨士. 金属学报, 2012; 48: 289)
[9] Luo X M, Zhao G Z, Chen K M, Zhang Y K, Luo K Y, Ren X D.  Acta Metall Sin, 2012; 48: 1116
 (罗新民, 赵广志, 陈康敏, 张永康, 罗开玉, 任旭东. 金属学报, 2012; 48: 1116)
[10] Zhang K S.  Acta Mech Sin, 2004; 36: 714
 (张克实. 力学学报, 2004; 36: 714)
[11] Zhao Z W.  Appl Math Mech, 2001; 22: 79
 (赵祖武. 应用数学和力学, 2001; 22: 79)
[12] Feng A X, Nie G F, Xue W, Cao Y P, Xu X X, Li B, Shi F.  Acta Metall Sin, 2012; 48: 205
 (冯爱新, 聂贵峰, 薛伟, 曹宇鹏, 徐晓翔, 李彬, 施芬. 金属学报, 2012; 48: 205)
[13] Zhang G T, Sheng G M, Huang L.  Mater Rev, 2008; 22(spec): 135
 (张功庭, 盛光敏, 黄利. 材料导报, 2008; 22(专辑): 135)
[14] Liu G, Sun Y L, Hu J, Zhou K.  Acta Metall Sin, 2010; 46: 979
 (刘刚, 孙雅丽, 胡津, 周科. 金属学报, 2010; 46: 979)
[15] Zhao J S.  Fundamental Theory of Dislocation. Beijing: Beijing Institute of Aviation Press, 1982: 111
(赵敬世. 位错理论基础. 北京: 北京航空学院出版社, 1982: 111)
[16] Cahn R W, Haasen P.  Physical Metallurgy-III. Amsterdam: Elsevier Science B.V., 1996: 1979
[17] Deng Y L, Zhang X M, Tang J G, Liu Y, Chen Z Y, Zhou Z P.  Acta Metall Sin, 2005; 41: 477
 (邓运来, 张新明, 唐建国, 刘瑛, 陈志永, 周卓平. 金属学报, 2005; 41: 477)
[18] Hu Q, Zhang Q C, Fu S H, Cao P T, Gong M.  Acta Phys Sin, 2011; 60: 096201
 (胡琦, 张青川, 符师桦, 曹鹏涛, 龚明. 物理学报, 2011; 60: 096201)
[19] Xiong X M, Zhang Q C, Cao P T, Xiao R.  Acta Metall Sin, 2009; 458: 892
  (熊少敏, 张青川, 曹鹏涛, 肖锐. 金属学报, 2009; 458: 892)
[20] Liu G, Yan W C, Yu F X, Zhao G, Zhao X, Zuo L.  Acta Metall Sin, 2011; 47: 649
 (刘刚, 严文聪, 于福晓, 赵刚, 赵骧, 左良. 金属学报, 2011; 47: 649)
[21] Liu Q, Yao Z Y, Godfrey A, Liu W.  Acta Metall Sin, 2009; 45: 641
 (刘庆, 姚宗勇, Godfrey A, 刘伟. 金属学报, 2009; 45: 641)
[22] Yao Z Y, Liu Q, Godfrey A, Liu W.  Acta Metall Sin, 2009; 45: 647
 (姚宗勇, 刘庆, Godfrey A, 刘伟. 金属学报, 2009; 45: 647)
[23] Wu X L, Li B, Ma E.  Appl Phys Lett, 2007; 91: 141908
[24] Li M, Chu W Y, Gao K W, Qiao L J.  Acta Metall Sin, 2003; 39: 1099
 (李明, 褚武扬, 高克玮, 乔利杰. 金属学报, 2003; 39: 1099)
[25] Luo X M, Zhang J W, Ma H, Zhang Y K, Chen K M, Ren X D, Luo K Y.  Trans Mater Heat Treat, 2012; 33: 8
 (罗新民, 张静文, 马辉, 张永康, 陈康敏, 任旭东, 罗开玉. 材料热处理学报, 2012; 33: 8)
[26] Lu K, Lu L.  Acta Metall Sin, 2000; 36: 785
 (卢柯, 卢磊. 金属学报, 2000; 36: 785)
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[5] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[6] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[7] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[8] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[9] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[10] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[11] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[12] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[13] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[14] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[15] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.