Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 831-837    DOI: 10.3724/SP.J.1037.2012.00759
  论文 本期目录 | 过刊浏览 |
混装BGA器件高温老化实验焊点微观组织研究
杭春进,田艳红,赵鑫,王春青
哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨150001
RESEARCH ON MICROSTRUCTURE OF Pb-FREE BGA SOLDER JOINT ASSEMBLED WITH Sn-Pb SOLDER DURING ISOTHERMAL AGING
HANG Chunjin, TIAN Yanhong,ZHAO Xin, WANG Chunqing
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001
引用本文:

杭春进,田艳红,赵鑫,王春青. 混装BGA器件高温老化实验焊点微观组织研究[J]. 金属学报, 2013, 49(7): 831-837.
HANG Chunjin, TIAN Yanhong, ZHAO Xin, WANG Chunqing. RESEARCH ON MICROSTRUCTURE OF Pb-FREE BGA SOLDER JOINT ASSEMBLED WITH Sn-Pb SOLDER DURING ISOTHERMAL AGING[J]. Acta Metall Sin, 2013, 49(7): 831-837.

全文: PDF(4103 KB)  
摘要: 

采用有Pb焊料对无Pb焊点球栅阵列(BGA)塑封器件进行焊接,选用再流焊工艺对器件进行混装焊接. 对混装再流焊BGA器件分别进行4, 9,16和25 d的高温老化实验, 在老化实验前后不同阶段,使用精密电阻仪对混装BGA器件进行电性能测试, 没有发现器件的电性能失效.利用SEM对焊点微观组织的分析发现, 混装焊点印制电路板(PCB)侧金属间化合物(IMC)成分为Cu3Sn和Cu6Sn5,BGA焊盘侧IMC成分为Ni-Cu-Sn三元化合物. 对焊点两侧的IMC进行厚度测量,结果表明, 随老化时间延长两侧的IMC厚度都增大,PCB一侧IMC生长速率明显高于BGA焊盘一侧. 此外,有一些焊点内部和界面处出现了富Pb相聚集、IMC破裂、界面裂纹以及空洞等可靠性隐患.

关键词 混装焊点高温老化微观组织可靠性    
Abstract

The Pb-free plastic encapsulated ball grid array (BGA) packages have been assembled to printed-circuit boards (PCBs) with SnPb solder material using reflowing process. Isothermal aging with 4, 9, 16 and 25 d was applied to the assembled packages and the microstructures of the solder joints in the BGA packages were observed using SEM. The electrical performance test was conducted before and after different periods of isothermal aging. The result showed that there were no failure in the BGA devices. It was found that intermetallic compounds (IMCs) in the PCB substrate side were Cu3Sn and Cu6Sn5 while Ni-Cu-Sn ternary compounds were in BGA substrate side. The thicknesses of IMCs on both sides increased with the time of isothermal aging. The IMC growth rate at PCB side was significantly greater than that at BGA substrate side. The aggregation of Pb-rich phase, cracks along substrate, broken IMCs, and voids, which have negative effects on the joints reliability, were observed in a few solder joints after long-term isothermal aging process.

Key wordsmixed solder joint    isothermal aging    microstructure, reliability
收稿日期: 2012-12-20     
基金资助:

国家自然科学基金资助项目51075103

作者简介: 杭春进, 男, 1978年生, 讲师, 博士

[1]Qu X, Chen Z X, Qi B, Lee T, Wang J J. Microelectron Reliab, 2007; 47: 2197
[2]Kim Y B, Noguchi H, Amagai H. Microelectron Reliab,2006; 46: 459
[3]Kannabiran A, Pannerselvam E T, Ramkumar S M. IEEE Trans Electron Packag Manuf, 2007; 30: 138
[4]Liang J, Downes S, Dariavach N, Shangguan D, Heinrich S M.J Electron Mater, 2004; 33: 1507
[5]Ha S S, Sung J Y, Yoon J W, Jung S B. Microelectron Eng, 2011; 88: 709
[6]Herkommer D, Punch J, Reid M. Microelectron Reliab,2010; 50: 116
[7]Zeng K J, Pierce M, Miyazaki H, Holdford B. J Electron Mater, 2012; 41: 253
[8]Snugovsky P, McCormick H, Bagheri S, Bagheri Z, Hamilton C,Romansky M. J Electron Mater, 2009; 38: 292
[9]Shang H X, Gao J X, Nicholson P I, Kenny S.Microelectron Reliab, 2011; 51: 994
[10]Khatibi G, Wroczewski W, Weiss B, Ipser H.Microelectron Reliab, 2009; 49: 1283
[11]Tu K N, Lee T Y, Jang J W, Li L, Frear D R, Zeng K,Kivilahti J K. Appl Phys, 2001; 89: 4843
[12]Nousiainen O, Putaala J, Kangasvieri T, Rautioaho R,Vahakangas J. J Electron Mater, 2006; 35: 1857
[13]Choubey A, Osterman M, Pecht M. IEEE Trans Device Mater Reliab, 2008; 8: 160
[14]Chuang T H, Cheng C Y, Chang T C. J Electron Mater, 2009; 38: 2762
[15]Koo J M, Jung S B. Microelectron Reliab, 2007; 47:2169
[16]Hsiao H Y, Liu C M, Lin H W, Liu T C, Lu C L, Huang Y S,Chen C, Tu K N. Science, 2012; 336: 1007
[17]Yost F G, Ganyard F P, Kamowsky M M. Metall Mater Trans, 1976; 7A: 1141
[18]Anderson I E, Walleser J W, Harringa J L, Laabs F, Kracher A. J Electron Mater, 2009; 38: 2770
[19]Zhong W H, Chan Y C, Alam M O, Wu B Y, Guan J F. J Alloys Compd, 2006; 414: 123
[20]Koo J M, Vu B Q, Kim Y N, Lee J B, Kim J W, Kim D U, Moon J N, Jung S B. J Electron Mater, 2008; 37: 118
[21]Laurila T, Vuorinen V, Kivilahti J K. Mater Sci Eng, 2005; R49: 1
[22]Lee T K, Ma H T, Liu K C, Xue J. J Electron Mater,2010; 39: 2564
[23]Xu L H, Pang J H L, Che F X. J Electron Mater,2008; 37: 880
[24]Lin H J, Chuang T H. Microelectron Reliab, 2011;51: 445
[25]Lin K S, Huang H Y, Chou C P. J Mater Eng Perform,2009; 18: 182
[26]Yoon J W, Noh B I, Lee Y H, Lee H S, Jung S B.Microelectron Reliab, 2008; 48: 1864
[27]Hang C J, Wang C Q, Mayer M, Tian Y H, Zhou Y, Wang H H.Microelectron Reliab, 2008; 48: 416

[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.