Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 689-698    DOI: 10.3724/SP.J.1037.2012.00744
  论文 本期目录 | 过刊浏览 |
X80管线钢高pH应力腐蚀开裂机制与电位的关系
范林,刘智勇,杜翠薇,李晓刚
北京科技大学腐蚀与防护中心教育部腐蚀与防护重点实验室, 北京100083
RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL
FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang
Key Laboratory of Chinese Ministry of Education for Corrosion and Protection, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
引用本文:

范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. Acta Metall Sin, 2013, 49(6): 689-698.

全文: PDF(5387 KB)  
摘要: 

采用慢应变速率拉伸实验和恒电位浸泡实验,分析了不同电位下X80管线钢在高pH环境中的应力腐蚀开裂(SCC)行为和机制.结合不同扫描速率下的动电位极化曲线的测量,从热力学角度对SCC的敏感电位区间进行了划分.在综合考虑材料的最大断裂强度和面缩率损失的前提下,提出了评价SCC敏感性的综合指标I,并将适用于酸性土壤模拟溶液中的SCC敏感性判据拓展到高pH环境中对其进行了验证.结果表明, X80钢在本实验溶液中的SCC敏感电位区间可以划分为: -600 — -569 mV, 受阳极溶解(AD)机制控制,沿晶应力腐蚀开裂(IGSCC)较为敏感, 铁素体晶界优先溶解; 在开路电位Eocp­ — -600 mV, SCC敏感性最低,以点蚀的发生和发展为特征,单纯的AD机制不会导致显著的穿晶应力腐蚀开裂(TGSCC)敏感性;在析氢电位-1046 mV—Eocp,在AD和氢脆(HE)机制的共同作用下, X80钢的SCC敏感性最高,裂纹以TGSCC的形式扩展, 点蚀对TGSCC裂纹的萌生和扩展起到关键作用;低于-1046 mV, X80钢在HE的作用下断裂, 表现出较高的脆性. 经计算验证,采用I作为评价SCC敏感性的指标是可行的.

关键词 X80管线钢应力腐蚀开裂pH环境外加电位评价方法    
Abstract

Most of the current researches are only limited to the evaluation of high pH stress corrosion cracking (SCC) susceptibilities of pipeline steels at some certain potentials, but the division of the sensitive potential ranges controlled by different SCC mechanisms is rarely reported. When the results of SCC susceptibilities adopted by using the ultimate fracture strength, the reduction-in-area and the elongation rate separately are not consistent, how to evaluate the SCC susceptibilities taking into account both the loss of fracture strength and toughness also needs solving. In this work, the slow strain rate tensile tests were conducted to evaluate the SCC susceptibilities of X80 pipeline steel in concentrated carbonate/bicarbonate solution at different applied potentials. The immersion tests at several constant potentials were used to analyze the potential sensitivity of electrochemical corrosion behavior and its influence on the SCC controlling mechanisms. With the aid of potentiodynamic polarization tests and the thermodynamical calculation, the typical potential ranges of different SCC controlling mechanisms were divided. Considering both of the ultimate fracture strength and reduction-in-area loss, a comprehensive index I for estimating SCC susceptibility was established and verified. The main results showed that at -580 mV, the ferritic intergranular was corroded preferentially, and X80 steel exhibited remarkable intergranular SCC (IGSCC) with anodic dissolution (AD) as the controlling mechanism. At -750~mV, the ferritic grain was prone to be dissolved causing the occurrence of pitting, but the steel showed very low SCC susceptibility, which indicated that high transgranular SCC (TGSCC) susceptibility could not be triggered only by AD. The open circuit potential Eocp could be seen as a transition potential between pitting and TGSCC zone, at which the SCC susceptibility was slightly enhanced. At -880 mV, the steel showed tremendous TGSCC susceptibility due to the synergistic effects of AD and hydrogen embrittlement (HE), although it was protected by the applied cathodic potential. And the SCC behavior mainly controlled by HE at -1200~mV, showing quasi-cleavage fracture mode. Therefore, the typical potential ranges could be divided into four categories: -600 —­ -569~mV for IGSCC, Eocp— -600 mV for pitting, hydrogen evolution potential -1046 mV—E ocp for TGSCC, and below -1046 mV for HE,i.e., quasi-cleavage cracking. By applying the criteria proposed in acidic soil simulated solution to illustrate the SCC susceptibility in this work, the comprehensive index I was proved to be reasonable, which provided a supplementary method for evaluating the SCC susceptibility.

Key wordsX80 pipeline steel    stress corrosion cracking    high pH environment    applied potential    evaluation method
收稿日期: 2012-12-18     
基金资助:

国家自然科学基金项目50971016和51171025资助

作者简介: 范林, 男, 1982年生, 博士生

[1] Liang P, Li X G, Du C W, Chen X. Mater Des, 2009;30: 1712
[2] Gu B, Luo J L, Mao X. Corrosion, 1999; 55: 96
[3] Cheng Y F. J Mater Sci, 2007; 42: 2701
[4] Eslami A, Fang B, Kania R, Worthingham B, Been J, Eadie R,Chen W. Corros Sci, 2010; 52: 3750
[5] Eslami A, Kania R, Worthingham B, Boven G V, Eadie R, ChenW. Corros Sci, 2011; 53: 2318
[6] Torres-Islas A, Gonzalez-Rodriguez J G, Uruchurtu J,Serna S. Corros Sci, 2008; 50: 2831
[7] Liu Z Y, Li X G, Du C W, Zhai G L, Cheng Y F.Corros Sci, 2008; 50: 2251
[8] Zhang L, Li X G, Du C W, Huang Y Z. Mater Des,2009; 30: 2259
[9] Xiao J, Wu M, Chen X, Wang C X. Mater HeatTreat, 2010; 39(18): 28
(肖军, 吴明, 陈旭, 王成祥. 材料热处理技术, 2010; 39(18):28)
[10] Zhang L, Li X G, Du C W, Liang P. J Chin Soc Corros Prot, 2009; 29: 353
(张亮, 李晓刚, 杜翠薇, 梁平. 中国腐蚀与防护学报, 2009; 29:353)
[11] Chen X, Wu M, He C, Xiao J. Acta Metall Sin,2010; 46: 951
(陈旭, 吴明, 何川, 肖军. 金属学报, 2010; 46: 951)
[12] Parkins R N. Corros Sci, 1980; 20: 147
[13]Charles E A, Parkins R N. Corrosion, 1995; 51: 518
[14] Parkins R N. Corrosion, 1996; 52: 363
[15] Liu Z Y, Zhai G L, Du C W, Li X G. Acta Metall Sin, 2008; 44: 209
(刘智勇, 翟国丽, 杜翠薇, 李晓刚. 金属学报, 2008; 44: 209)
[16] Liu Z Y, Wang C P, Du C W, Li X G. Acta Metall Sin, 2011; 47: 1434
(刘智勇, 王长朋, 杜翠薇, 李晓刚. 金属学报, 2011; 47: 1434)
[17] Parkins R N, Zhou S. Corros Sci, 1997; 39: 175
[18] Parkins R N, O'Dell C S, Fessler R R. Corros Sci,1984; 24: 343
[19] Thomas J G N, Nurse T J, Walker R. Br Corros J,1970; 5: 87
[20] Cheng Y F, Niu L. Electrochem Commun, 2007; 9:558
[21] Yan M C, Wang J Q, Han E H, Ke W. Corros Sci,2008; 50: 1331
[22] Li M C, Cheng Y F. Electrochim Acta, 2007; 52:8111
[23] Bouaeshi W, Ironside S, Eadie R. Corrosion, 2007;63: 648
[24] Beavers J A, Harle B A. J Offshore Mech Arctic Eng, 2001; 123: 147
[25] Liu Z Y, Li X G, Zhang Y R, Du C W, Zhai G L. Acta Metall Sin (Eng Lett), 2009; 22: 58

[1] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[3] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[4] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[5] 武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报, 2019, 55(1): 33-44.
[6] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[7] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[8] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[9] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[10] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[11] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[12] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[13] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[14] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[15] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.