Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 811-821    DOI: 10.3724/SP.J.1037.2012.00740
  论文 本期目录 | 过刊浏览 |
800H合金热变形行为及热加工性能研究
曹宇1),邸洪双1),张敬奇1),马天军2),张洁岑1)
1) 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳110819
2) 宝山钢铁股份有限公司特钢事业部, 上海200940
RESEARCH ON HOT DEFORMATION BEHAVIOR AND HOT WORKABILITY OF ALLOY 800H
CAO Yu 1), DI Hongshuang1), ZHANG Jingqi1), MA Tianjun2), ZHANG Jiecen1)
1) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2) Special Steel Business Unit, Baoshan Iron & Steel Co., Ltd., Shanghai 200940
引用本文:

曹宇,邸洪双,张敬奇,马天军,张洁岑. 800H合金热变形行为及热加工性能研究[J]. 金属学报, 2013, 49(7): 811-821.
CAO Yu, DI Hongshuang, ZHANG Jingqi, MA Tianjun, ZHANG Jiecen. RESEARCH ON HOT DEFORMATION BEHAVIOR AND HOT WORKABILITY OF ALLOY 800H[J]. Acta Metall Sin, 2013, 49(7): 811-821.

全文: PDF(4056 KB)  
摘要: 

800H合金进行单道次压缩热模拟实验, 研究了该合金在850­­—1100℃和0.01—30 s-1条件下的热变形行为,建立了基于动态材料模型的热加工图, 结合微观组织的演变规律, 分析了工艺参数对800H合金热加工性能的影响.结果表明: 当应变速率超过1 s-1时, 800H合金在热变形过程中产生了明显的绝热温升现象,该现象随着变形温度的降低或应变速率的升高而更加明显; 通过转动动态再结晶机制,在大应变速率下, 剪切带附近产生了超细再结晶晶粒; 当变形温度低于950℃时, 在低应变速率条件下,应变诱导析出效应对晶界移动产生了具有钉扎效应的“齐纳压力'', 增大了热变形激活能, 抑制了动态再结晶的发生;利用加工图可以确定不同变形条件区域内的微观组织特征以及800H合金的最佳热加工工艺参数范围为:975—1100℃和0.01—0.3 s-1.

关键词 800H合金热变形绝热温升应变诱导析出加工图    
Abstract

During the processing of hot working, the material undergoes shape and microstructural changes depending on the processing history. Therefore, the optimization of the processing parameters such as temperature, strain and strain rate is of great importance to achieve a defect-free component with desired microstructure. In order to optimize the hot working technology, the hot deformation behavior and hot workability of alloy 800H in the temperature range of 850-1100℃ and strain rate range of 0.01-30 s-1 were investigated with single-pass compression tests on MMS-300 thermo-simulation machine. The flow stress-strain curves of alloy 800H under different deformation conditions were plotted. The influence of precipitation on hot deformation below 950℃ at low strain rates was studied. The processing map was established based on dynamic materials model. The effect of processing parameters on hot workability and the mechanism of hot deformation in different regimes of processing map were analyzed combined with the observation of microstructural evolution. The results revealed that the adiabatic heating is generated obviously if strain rate is higher than 1 s-1 during hot deformation, which leads to flow softening via the mechanism of rotational dynamic recrystallization (DRX). Some ultrafine grains can be found in the core of shear bands. The magnitude of temperature rising and subsequent softening are supposed to be more significant at higher strain rates or lower deformation temperatures. The occurrence of DRX is inhibited by “Zener effect'' which pins the migration of grain boundaries and increases the activation energy of hot deformation. The alloy 800H exhibits a better workability in deformation temperature range from 975℃  to 1100℃ and strain rate range from 0.01 s-1 to 0.3 s-1 with the efficiency of power dissipation within the range of 35%—48%.

Key wordsalloy 800H    hot deformation    adiabatic heating    strain induced precipitation    processing map
收稿日期: 2012-12-18     
基金资助:

国家重点基础研究发展计划项目2011CB606306-2和中央高校基本科研业务费项目N110607005资助

作者简介: 曹宇, 男, 1986年生, 博士生

[1] Liu Q, Hansen N.  Scr Metall Mater, 1995; 32: 1289

[2] Hansen N, Huang X, Winther G.  Mater Sci Eng, 2008; A494: 61
[3] Meyers M A, Andrade U R, Chokshi A H.  Metall Mater Trans, 1995; 26A: 2881
[4] Nemat-Nasser S, Isaacs J B, Liu M Q.  Acta Mater, 1998; 46: 1307
[5] Meyer M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R.  Acta Mater, 2003; 51: 1307
[6] Xue Q, Bingert J F, Henrie B L, Gray III G T.  Mater Sci Eng, 2008; A473: 279
[7] Xu Y B, Yang H J, Meyer M A.  Scr Mater, 2008; 58: 691
[8] Derby B.  Acta Metall, 1991; 39: 955
[9] Meyers M A, Nesterenko V F, Lasalvia J C, Xu Y B, Xue Q J.  Phys IV, 2000; 9: 51
[10] Hines J A, Vecchio K S, Ahzi S.  Metall Mater Trans, 1998; 29A: 191
[11] Momeni A, Dehghani K, Keshmiri H, Ebrahimi G R.  Mater Sci Eng, 2010; A527: 1605
[12] Ju Q, Li D G, Liu G Q.  Acta Metall Sin, 2006; 42: 219
(鞠泉, 李殿国, 刘国权. 金属学报, 2006; 42: 219)
[13] Zhang J Q, Di H S, Wang H T, Mao K, Ma T J, Cao Y.  J Mater Sci, 2012; 47: 4000
[14] Sivaprasad P V, Mannan S L, Prasad Y V R K, Chaturvedi R C.  Mater Sci Technol, 2001; 17: 545
[15] Tang W N, Chen R S, Han E H.  Acta Metall Sin, 2006; 42: 1096
 (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)
[16] Meng G, Li B L, Li H M, Nie Z R.  Mater Sci Eng, 2009; A517: 132
[17] Cavaliere P, Cerri E, Evangelista E.  Mater Sci Eng, 2004; A387--389: 857
[18] Lin Y C, Chen M S, Zhong J.  Mech Res Commun, 2008; 35: 142
[19] Mandal S, Bhaduri A K, Subramaya Sarma V.  Metall Mater Trans, 2012; 43A: 2056
[20] Roberts W, Ahlblom B.  Acta Metall, 1978; 26: 801
[21] Meyers M A, Nesterenko V F, Lasalvia J C, Xue Q.  Mater Sci Eng, 2001; A317: 204
[22] Monajati H, Jahazi M, Yue S, Taheri A K.  Metall Mater Trans, 2005; 36A: 895
[23] Goetz R L, Semiatin S L.  J Mater Eng Perform, 2001; 10: 710
[24] Mataya M C, Sackschewsky V E.  Metall Mater Trans, 1994; 41A: 2737
[25] Liu Y, Hu R, Li J S, Kou H C, Li H W, Chang H, Fu H Z.  Mater Sci Eng, 2008; A497: 283
[26] Akben M G, Weiss I, Jonas J J.  Acta Metall, 1981; 29: 114
[27] Lee K J.  Scr Mater, 1999; 40: 840
[28] Vega M I, Medina S F, Chapa M, Quispe A.  ISIJ Int, 1999; 39: 1304
[29] Guo J T, Ranucci D, Picco E, Strocchi M.  Metall Mater Trans, 1983; 14A: 2329
[30] Cao Y, Di H S, Zhang J C, Ma T J, Zhang J Q.  Acta Metall Sin, 2012; 48: 1179
(曹宇, 邸洪双, 张洁岑, 马天军, 张敬奇. 金属学报, 2012; 48: 1179)
[31] Zurob H S, Berchet Y, Purdy G.  Acta Mater, 2001; 49: 4183
[32] Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, Morgan J T, Lark K A, Barker D R.  Metall Mater Trans, 1984; 15A: 1883
[33] Kalyan Kumar A K S.  PhD Dissertation, Indian Institute of Science, Bangalore, India, 1987
[34] Ziegler H.  Progress in Solid Mechanics. New York: Wiley, 1963: 93
[35] Prasad Y V R K, Seshacharyulu T.  Int Mater Rev, 1998; 43: 243
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[3] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[4] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[5] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[6] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[7] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[8] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[9] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[10] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[11] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[12] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[13] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[14] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[15] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.