Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 599-604    DOI: 10.3724/SP.J.1037.2012.00733
  论文 本期目录 | 过刊浏览 |
异步轧制纯Ti薄板表面纳米晶的形成
刘刚1),刘金阳2),王小兰3),王福会3),赵骧2),左良2)
1) 东北大学研究院, 沈阳 110819
2) 东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
3) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
FORMATION OF NANOCRYSTALLINES IN THE SURFACE LAYER OF COMMERCIAL PURE TITANIUM THIN SHEET DURING ASYMMETRIC ROLLING
LIU Gang1), LIU Jinyang 2), WANG Xiaolan 3), WANG Fuhui 3),ZHAO Xiang 2), ZUO Liang 2)
1) Research Academy, Northeastern University, Shenyang 110819
2) Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University,Shenyang 110819
3) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences ,Shenyang 110016
引用本文:

刘刚,刘金阳,王小兰,王福会,赵骧,左良. 异步轧制纯Ti薄板表面纳米晶的形成[J]. 金属学报, 2013, 49(5): 599-604.
LIU Gang, LIU Jinyang, WANG Xiaolan, WANG Fuhui, ZHAO Xiang, ZUO Liang. FORMATION OF NANOCRYSTALLINES IN THE SURFACE LAYER OF COMMERCIAL PURE TITANIUM THIN SHEET DURING ASYMMETRIC ROLLING[J]. Acta Metall Sin, 2013, 49(5): 599-604.

全文: PDF(2081 KB)  
摘要: 

对工业纯Ti板材进行异步轧制, 在板材表面获得纳米晶组织, 对显微组织演变和硬度沿板材深度的分布进行了测试分析. 结果表明, 经过异步轧制后, 工业纯Ti表面形成了等轴状、尺寸介于30-60 nm的纳米晶组织, 证明异步轧制可以使大尺寸金属板材在轧制过程中实现表面纳米化. 异步轧制板材表面纳米晶的形成过程包括: 在外力的反复作用下, 位错密度升高, 并通过滑移、湮灭和重组形成了亚微米尺度的位错胞/亚微晶. 随着轧制道次和压下量的增加, 高密度位错重复上述过程使晶粒尺寸不断减小、取向差持续增大, 最终形成等轴状、具有中等到大角度晶界的纳米晶组织. 表面梯度层在轧制初期形成, 其厚度随着压下量增加而逐渐增大, 层内硬度变化与晶粒尺寸密切相关.

关键词 工业纯Ti异步轧制表面纳米化结构硬度    
Abstract

Commercial pure titanium sheet was rolled by means of asymmetric rolling in order to obtain nanocrystallines in the top-surface layer, the microstructural evolution was examined by using different experimental techniques. Experimental results show that, after the asymmetric rolling, equiaxed nanocrystallines of about 30-60 nm in size form in the top-surface layer of sheet. The research work indicates that the surface nanocrystallization can be realized for large-dimensional metal sheets during the rolling process by using the asymmetric rolling. The asymmetric rolling induced surface nanocrystallization mechanism was summarized as follows: upon the application of repeated loads, dislocation cells/sub-micro-grains form through slips, annihilations and recombinations of high density of dislocations; with the increment of rolling pass and reduction,high density of dislocations in the refined cells/grains developing in above route lead to the reduction of grain size and the increment of misorientations between the refined grains, and finally equiaxed nanocrystallines with medium to large angle grain boundaries form. A gradient-structured surface layer of about 30μm thick was observed to form in the initial stage,its thickness increases with increasing rolling reduction, and the hardness variation along the depth was found to relate to the grain size.

Key wordscommercial pure titanium,    asymmetric rolling    surface nanocrystallization, structure, hardness
收稿日期: 2012-12-12     
基金资助:

国家自然科学基金资助项目50571095

作者简介: 刘刚, 男, 1963年生, 教授

[1] Lu K, Lu J.  Mater Sci Eng, 2004; A375-377: 38


[2] Liu G, Wang S C, Lou X F, Lu J, Lu K.  Scr Mater, 2001; 44: 1791

[3] Umemoto M, Todaka Y, Tsuchiya K.  Mater Trans, 2003; 44: 1488

[4] Xiong T Y, Liu Z W, Li Z C.  Mater Rev, 2003; 17: 69

(熊天英, 刘志文, 李智超. 材料导报, 2003; 17: 69)

[5] Wang T, Wang D P, Liu G, Gong B M, Song N S.  Appl Surf Sci, 2008; 255: 1829

[6] Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K.  Acta Mater, 2002; 50: 2075

[7] Zhang H W, Hei Z K, Liu G, Lu J, Lu K.  Acta Mater, 2003; 51: 1871

[8] Wang K, Tao N R, Liu G, Lu J, Lu K.  Acta Mater, 2006; 54: 5281

[9] Zhou L, Liu G, Ma X L, Lu J, Lu K.  Acta Mater, 2008; 56: 78

[10] Yong X P, Liu G, Lu J, Lu K.  J Mater Sci Technol, 2003; 19: 1

[11] Roland T, Retraint D, Lu J, Lu K.  Scr Mater, 2006; 54: 1949

[12] Prakash N A, Gnanamoorthy R, Kamaraj M.  Mater Sci Eng, 2010; B168: 176

[13] Lu A Q, Zhang Y, Li Y, Liu G, Liu C M.  Acta Metall Sin, 2005; 41: 271

(吕爱强, 张洋, 李瑛, 刘刚, 刘春明. 金属学报, 2005; 41: 271)

[14] Liu G, Mo C G, Wu B L, Zuo L.  Iron Steel, 2011; 46: 70

(刘刚, 莫成刚, 武保林, 左良. 钢铁, 2011; 46: 70)

[15] Mousavi S A A A, Ebrahimi S M, Madoliat R.  J Mater Process Technol, 2007; 187-188: 725

[16] Jiang J H, Ding Y, Zuo F Q, Shan A D.  Scr Mater, 2009; 60: 905

[17] Kim W J, Yoo S J, Jeong H T, Kim D M, Choe B H, Lee J B.  Scr Mater, 2011; 64: 49

[18] Ji Y H, Park J J, Kim W J.  Mater Sci Eng, 2007; A454-455: 570

[19] Ji Y H, Park J J.  Mater Sci Eng, 2008; A485: 299

[20] Zhu K Y, Vassel A, Brisset F, Lu K, Lu J.  Acta Mater, 2004; 52: 4101
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[3] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[7] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[8] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[9] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[10] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[11] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[12] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[13] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[14] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[15] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.