Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 605-613    DOI: 10.3724/SP.J.1037.2012.00708
  论文 本期目录 | 过刊浏览 |
激光成形修复2Cr13不锈钢热影响区的组织研究
徐庆东,林鑫,宋梦华,杨海欧,黄卫东
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL
XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. Acta Metall Sin, 2013, 49(5): 605-613.

全文: PDF(5423 KB)  
摘要: 

对激光成形修复2Cr13不锈钢热影响区分别进行了单道单层、多道单层、单道多层和多道多层4种形式的修复实验.通过金相观察和硬度测试确定了激光成形修复区域的组织特征, 结合热影响区温度场模拟分析了组织形成机理.结果表明: 热影响区内微观组织从基材到修复区底部呈现连续性变化, 其中, 主要相结构经历了α铁素体→α铁素体+少量马氏体→马氏体+少量α铁素体→马氏体的转变,马氏体的出现导致硬度快速上升; 同时, 原M23C6型碳化物逐渐溶解, 直至消失, 且晶内碳化物先于晶界碳化物发生溶解;伴随碳化物的溶解逐渐出现δ铁素体;随着趋近修复区底部, δ铁素体逐渐增多、长大并连成骨架; 当沉积层数增加后, 硬度峰值随之下降, 在热影响区中部的部分区域会出现晶粒细化, 且热影响区顶部的晶界逐渐开始析出碳化物, 同时, δ铁素体骨架逐步被晶界打断.

关键词 激光成形修复2Cr13不锈钢热影响区组织特征温度场模拟    
Abstract

2Cr13 martensitic stainless steel is widely used in the manufacturing of heavy load components,which are easy to be damaged due to their severe service environment. If these damaged components can be repaired rapidly, considerable savings in materials, processing and time costs can be achieved. Four kinds of laser forming repairing for 2Cr13 stainless steel sample, single-track single-layer, multi-track single-layer, single-track multi-layer and multi-track multi-layer, was conducted to investigate their microstructure characteristic and evolution of heat-affected zone (HAZ). The formation mechanism of microstructure was analyzed based on the temperature field simulation. It is found that microstructure varies continuously from substrate zone (SZ) to the bottom of laser repaired zone (RZ), in which the main phases varied asα ferrite→α ferrite+ martensite →martensite+α ferrite→martensite, and the appearance of the martensite led to a rapid increase in hardness. Meanwhile, the primary M23C6 dissolved gradually and disappeared eventually. It is interesting to note that the dissolving of intragranular carbides occurred prior to the intergranular carbides. With the carbides dissolving, δ ferrite particles appeared, coarsened and connected into skeleton patterns eventually when closing to the bottom of RZ. As the deposited layers increased, the hardness peak decreased, and the grains were refined in the partial region of the middle of HAZ. The carbides precipitated again in the grain boundary at the top of HAZ, meanwhile, δ skeleton is gradually interrupted by the grain boundary.

Key wordslaser forming repairing    2Cr13 stainless steel    heat-affected zone    microstructure characteristic    temperature field simulation
收稿日期: 2012-11-28     
基金资助:

国家自然科学基金项目50971102, 国家重点基础研究发展计划项目2011CB610402,高等学校博士学科点专项科研基金项目

作者简介: 徐庆东, 男, 1988年生, 硕士生

[1] Shao T M, Hua M, Tam H Y.  Wear, 2003; 255: 444


[2] Xue L, Chen J, Lin X, Wang W, Lv X W, Huang W D.  Rare Met Mater Eng, 2007; 36: 989

(薛蕾, 陈静, 林鑫, 王维, 吕晓卫, 黄卫东. 稀有金属材料与工程, 2007; 36: 989)

[3] Yaso M, Morito S, Ohba T, Kobota K.  Mater Sci Eng, 2008; A481: 770

[4] Lin X, Yue T M, Yang H O, Huang W D.  Acta Mater, 2006; 54: 1901

[5] Gaumann M, Henry S, Cleton F, Wegniere J D, Kurz W.  Mater Sci Eng, 1999; A271: 232

[6] Liu F C, Lin X, Huang C P, Song M H, Yang G L, Chen J, Huang W D.  J Alloys Compd, 2011; 205: 4505

[7] Lin X, Yang H O, Chen J, Huang W D.  Acta Metall Sin, 2006; 42: 361

(林鑫, 杨海欧, 陈静, 黄卫东. 金属学报, 2006; 42: 361)

[8] Xu X J, Lin X, Yang M C, Chen J, Huang W D.  J Alloys Compd, 2009; 480: 782

[9] Wu X, Sharman R, Mei J, Voice W.  Mater Des, 2004; 25: 103

[10] Lin X, Yue T M.  Mater Sci Eng, 2005; A402: 294

[11] Liu Y H, Chen J, Zhang Q, Xue L, Lin X, Huang W D.  Chin Opt Lett, 2011; 9: 1671

[12] Tan H, Chen J, Zhang F Y, Lin X, Huang W D.  Rare Met Mater Eng, 2009; 38: 574

[13] Lin X, Cao Y Q, Wu X Y, Yang H O, Chen J, Huang W D.  Mater Sci Eng, 2012; A553: 80

[14] Mahmoudia

 B, Torkamany M J, Sabour Rouh Aghdam A R, Sabbaghzade J.  Mater Des, 2010; 31: 2553

[15] Chen J Y, Xue L, Wang S H. In: Asfahani R, Milbourn D, eds, Materials Science & Technology 2008 Conference & Exhibition, Pittsburgh: Materials Science and Technology, 2008: 1388

[16] Yang D H, Zhang X S, Xue Q J.  Tribology, 1994; 14: 41

(杨德华, 张绪寿, 薛群基. 摩擦学学报, 1994; 14: 41)

[17] Shao T M, Lin X C, Yuan W D.  Acta Metall Sin, 2001; 37: 1040

(邵天敏, 蔺秀川, 袁伟东. 金属学报, 2001; 37: 1040)

[18] Li Y M, Liu Z X, Yang H O, Lin X, Huang W D, Li J G.  Acta Metall Sin, 2003; 39: 521

(李延民, 刘振侠, 杨海欧, 林鑫, 黄卫东, 李建国. 金属学报, 2003; 39: 521)   

[19] Wang L, Felicelli S.  J Manuf Sci Eng, 2007; 129: 1028

[20] Jendrzejewski R, Kreja I, Sliwinski G.  Mater Sci Eng, 2004; A379: 313

[21] Jia W P, Tang H P, He W W, Lin X, Huang W D.  Acta Metall Sin, 2010; 46: 135

(贾文鹏, 汤慧萍, 贺卫卫, 林鑫, 黄卫东. 金属学报, 2010; 46: 135)

[22] Ye R Q, Smugeresky J E, Zheng B L, Zhou Y Z, Lavernia E J.  Mater Sci Eng, 2006; A428: 47

[23] Bassani R, Levita G, Meozzi M, Palla G.  Wear, 2001; 247: 125

[24] Lippold J C, Kotecki D J, translated by Chen J H.  Welding Metallurgy and Weldability of Stainless Steel.

Beijing: China Maching Press, 2008: 61

(Lippold J C, Kotecki D J著, 陈剑虹译. 不锈钢焊接冶金学及焊接性. 北京: 机械工业出版社, 2008: 61)

[25] Yong Q L.  Second Phases in Structural Steels. Beijing: Metallurgical Industry Press, 2006: 81

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 81)

[26] Miokovic T, Schulze V, Vohringer O, Lohe D.  Acta Metall, 2007; 55: 589
[1] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[2] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[3] 向雪梅, 江河, 董建新, 姚志浩. 难变形高温合金GH4975的铸态组织及均匀化[J]. 金属学报, 2020, 56(7): 988-996.
[4] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[5] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[6] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[7] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[8] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[9] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[10] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[11] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[12] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[13] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[14] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[15] 赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能*[J]. 金属学报, 2015, 51(2): 249-256.