Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 576-582    DOI: 10.3724/SP.J.1037.2012.00703
  论文 本期目录 | 过刊浏览 |
X100高强管线钢焊接接头的断裂韧性
毕宗岳1, 2),杨军1, 2),牛靖3),张建勋3)
1) 国家石油天然气管材工程技术研究中心, 宝鸡 721008
2) 宝鸡石油钢管有限责任公司 钢管研究院, 宝鸡 721008
3) 西安交通大学材料科学与工程学院, 西安 710065
FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL
BI Zongyue1,2), YANG Jun1,2), NIU Jing3), ZHANG Jianxun3)
1) National Engineering Technology Research Center for Petroleum and Natural Gas Tubular Goods,Baoji 721008
2) Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008
3) School of Materials Science and Engineering, Xi'an Jiao Tong University, Xi'an 710065
引用本文:

毕宗岳,杨军,牛靖,张建勋. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576-582.
BI Zongyue, YANG Jun, NIU Jing, ZHANG Jianxun. FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL[J]. Acta Metall Sin, 2013, 49(5): 576-582.

全文: PDF(3553 KB)  
摘要: 

采用裂纹尖端张开位移(CTOD)实验对X100高强管线钢焊接接头母材、焊缝和热影响区(HAZ)进行了断裂韧性测试研究, 并使用SEM和TEM对CTOD试样近断口区组织及夹杂物进行了观察. 结果表明, 温度对X100高强管线钢焊接接头断裂韧性有显著影响. 在同一温度下, 条件启裂值δ0.2δ0.2BL均呈现母材最大、热影响区次之、焊缝最小, 即母材低温断裂韧性最优、热影响区次之、焊缝最差, 但随温度降低, 其断裂韧性均下降. 母材试样近断口区显微组织为粒状贝氏体(GB)和少量准多边形铁素体(QF)及板条贝氏体铁素体(BF), 细小粒状M-A组元弥散分布于贝氏体铁素体板条界; 焊缝试样近断口区组织为针状铁素体(AF), M-A组元形态多样, 尖角明显; 热影响区粗晶区近断口组织为粒状贝氏体和平行排列的板条状贝氏体铁素体, M-A组元呈方形、楔形、条形分布于晶内、晶界和板条界处. 大尺寸尖角型M--A组元是导致焊缝和热影响区粗晶区断裂韧性差的主要原因之一, 而较高的夹杂物分布则使焊缝具有较低的断裂韧性.

关键词 X100管线钢焊接接头断裂韧性裂纹尖端张开位移(CTOD)    
Abstract

Fracture toughness of base metal, weld seam and heat-affected-zone (HAZ) in X100 high-strength pipeline steel welded joints was investigated by three-point crack tip opening displacement (CTOD) test. Microstructure and inclusion near fracture zones were observed by means of SEM and TEM. The results indicated that fracture toughness of X100 high-strength pipeline steel welded joints was greatly influenced by test temperature. At the same temperature, the numerical values of apparent crack initiation δ0.05, conditional crack initiation δ0.2 and δ0.2BL of base metal are higher than that of weld seam and HAZ, and low temperature fracture toughness of base metal is better than those of weld seam and HAZ. With temperature decreasing, the fracture toughness of base metal, weld seam and HAZ decreased. The microstructure of near fracture zones of base metal specimen was composed of granular bainite (GB), a small quasi polygonal ferrite (QF) and lath bainite ferrite (BF), and the fine and equally dispersed M-A structure distributed on the grain boundary. The microstructure of near fracture zones of weld seam specimen was composed of acicular ferrite (AF), and the form of M-A constituents shows diversity, sharp-angled clearly. The microstructure  of near fracture zones of coarse-grain HAZ was composed of GB and parallel LBF, and the square, wedged and bar M-A constituents distributed on the interior of grain, grain boundary and lath boundary. The poor fracture toughness of weld seam and HAZ specimen results from large size and cusp type M-A structure. While the higher distribution of inclusion in weld seam makes fracture toughness worse.

Key wordsX100 pipeline steel    welded joint    fracture toughness    crack tip opening displacement (CTOD)
收稿日期: 2012-11-27     
基金资助:

国家科技支撑计划项目资助2011BAE35B01

作者简介: 毕宗岳, 男, 1962年生, 高工, 博士

[1] Pan J H.  Weld Pipe, 2008; 31(4): 5


(潘家华. 焊管, 2008; 31(4): 5)

[2] Li H L, Ji L K, Xie L H.  J Hebei Univ Sci Technol, 2006; 27: 1

(李鹤林, 吉玲康, 谢丽华. 河北科技大学学报, 2006; 27: 1)

[3] Zhang B, Qian C W, Wang Y M, Zhang Y Z.  Petro Eng Cons, 2012; 38: 1

(张斌, 钱成文, 王玉梅, 张玉志. 石油工程建设, 2012; 38: 1)

[4] Takuya H, Eiji T, Hiroshi M, Hitoshi A.

 X100/X120 Level High Performance Pipeline Steel International High--Level Forum.

Beijing: China Machine Press, 2005: 136

[5] Yoo J Y, Ahn S S, Seo D H, Song W H, Kang K B.  Mater Manuf Process, 2011; 26: 154

[6] Wang Y Q, Wu Y M, Shi Y J, Jiang J J.  Eng Mech, 2006; 23: 74

(王元清, 武延民, 石永久, 江见鲸. 工程力学, 2006; 23: 74)

[7] Xiao G C, Jing H Y, Xu L Y.  J Mech Eng, 2011; 47: 26

(肖光春, 荆洪阳, 徐连勇. 机械工程学报, 2011; 47: 26)

[8] Zhou M, Du L X, Liu X H, Wang Y X.  J Plast Eng, 2010; 17: 108

(周民, 杜林秀, 刘相华, 王悦新. 塑性工程学报, 2010; 17: 108)

[9] Yu Z F, Shi H, Tong L, Liu R.  Oil Gas Storage Transp, 2010; 29: 143

(余志峰, 史航, 佟雷, 刘任. 油气储运, 2010; 29: 143)

[10] Li H L, Li X, Ji L K, Chen H D.  Weld Pipe, 2007; 30(5): 5

(李鹤林, 李霄, 吉玲康, 陈宏达. 焊管, 2007; 30(5): 5)

[11] Feng Y R, Diao S, Huo C Y, Xion Q R, Zhu W D, Li N.  China Saf Sci J, 2007; 17: 159

(冯耀荣, 刁顺, 霍春勇, 熊庆人, 朱维斗, 李年. 中国安全科学学报, 2007; 17: 159)

[12] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K.  Acta Mater, 2006; 54: 435

[13] Yang F P, Luo J H, Zhang H, Zhang G L, Zhang Y.  J Plast Eng, 2011; 18: 103

(杨锋平, 罗金恒, 张华, 张广利, 张奕. 塑性工程学报, 2011; 18: 103)

[14] Luo J W, Qin H T.  Weld Pipe, 2009; 32(7): 33

(骆建武, 覃海涛. 焊管, 2009; 32(7): 33)

[15] Shin S Y, Woo K J, Hwang B, Kim S, Lee S.  Metall Mater Trans, 2009; 40A: 867

[16] Hu C X.  Special Functional Coating. Beijing: Beijing University

of Technology Press, 1989: 1

(胡传析. 特种功能涂层. 北京: 北京工业大学出版社, 1989: 1)

[17] British Standard Institution.  BS 7448, London: British Standard, 1991

[18] Hwang B, Kim Y G, Lee S, Kim Y M, Kim N J, Yoo J Y.  Metall Mater Trans, 2005; 36A: 2107

[19] Xu X L, Zhao K, Zhao D, Wang W F.  J Iron Steel Res Int, 2011; 18: 487

[20] Xu D Y, Yu H.  Proceeding of the 10th International Conference on Steel Rolling.

Beijing: Metallurgical Industry Press, 2010: 134

[21] Bi Z Y, Jing X T, Xu X L, Jin S L.  J Iron Steel Res, 2010; 22: 27

(毕宗岳, 井晓天, 徐学利, 金时麟. 钢铁研究学报, 2010; 22: 27)

[22] Chen Y Q, Du Z Y, Xu L H.  Trans China Weld Inst, 2010; 31(5): 101

(陈延清, 杜则裕, 许良红. 焊接学报, 2010; 31(5): 101)

[23] Zhang X Y, Gao H L, Zhuang C J, Ji L K.  Trans China Weld Inst, 2010; 31(3): 29

(张骁勇, 高惠临, 庄传晶, 吉玲康. 焊接学报, 2010; 31(3): 29)

[24] Shu W, Wang X M, Li S R, He X L.  Acta Metall Sin, 2011; 47: 435

(舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2011; 47: 435)

[25] Chen Y Q.  PhD Dissertation, Tianjing University, 2010

(陈延清. 天津大学博士学位论文, 2010)

[1] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[2] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[3] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[4] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[7] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[8] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[9] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[10] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[11] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[12] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[13] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[14] 赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[15] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.