Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 717-724    DOI: 10.3724/SP.J.1037.2012.00679
  论文 本期目录 | 过刊浏览 |
Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为
韦天国1),龙冲生1),苗志1),刘云明1),栾佰峰2)
1)中国核动力研究设计院反应堆燃料及材料重点实验室, 成都 610041
2)重庆大学材料科学与工程学院, 重庆 400044
CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM
WEI Tianguo1), LONG Chongsheng1), MIAO Zhi1), LIU Yunming1)
1)Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041
2)Institute of Material Science and Technology, Chongqing University, Chongqing 400044
全文: PDF(2553 KB)  
摘要: 

采用真空非自耗电弧熔炼方法制备了4种不同Mo含量的Zr-0.4Fe-1.0Cr-xMo(x=0, 0.2, 0.4, 0.6, 质量分数, %)合金材料,研究了其在500℃, 10.3 MPa过热水蒸汽中的耐腐蚀性能以及添加Mo对合金耐腐蚀性能的影响.结果表明, Zr-0.4Fe-1.0Cr-xMo合金中含有大量细小的第二相粒子, 其腐蚀速率远远低于Zr-4,N18和M5合金. Mo的添加促进了氧化膜生长过程中的演变, 降低了耐腐蚀性能.不含Mo合金的氧化膜生长动力学在整个腐蚀周期(2000 h)内一直保持近似立方规律,而含Mo合金的氧化膜生长动力学在500--1000 h内由近似立方规律向直线规律转变.

关键词 锆合金Mo耐腐蚀性能第二相粒子氧化膜    
Abstract

The possibility of using Mo as an alloying element in zirconium alloys was considered in terms of its strengthening effect and microstructure refinement effect. However, the impact of Mo addition on the corrosion resistance was not fully understood. In this work, Zr-0.4Fe-1.0Cr-x Mo (x=0, 0.2, 0.4, 0.6, mass fraction,%) alloys with addition of different Mo contents were prepared by vacuum arc melting method and their corrosion resistance in 500℃, 10.3 MPa steam was investigated. Compared with Zr-4, N18 and M5 alloys, the corrosion rate of Zr-0.4Fe-1.0Cr-x Mo alloys was much lower, which was attributed to the large numbers of fine second phase particles in the matrix. Addition of Mo improved the evolution of the oxide film during growth and resulted in the degradation of corrosion resistance. The growth of the oxides remained cubic kinetics in the whole corrosion period (2000 h) for the Mo free alloy, whereas changed from cubic to linear kinetics after a corrosion time of 500--1000 h for the Mo containing alloys.

Key wordszirconium alloy    Mo    corrosion resistance, second phase particle    oxide film
收稿日期: 2012-11-12      出版日期: 2013-06-11
基金资助:

国家自然科学基金资助项目51171175

通讯作者: 龙冲生     E-mail: erde@yeah.net
作者简介: 韦天国, 男, 1985年生, 硕士

引用本文:

韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM. Acta Metall Sin, 2013, 49(6): 717-724.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00679      或      http://www.ams.org.cn/CN/Y2013/V49/I6/717

[1] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 505
[2] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R, Sabol G P eds.,Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295,West Conshonocken: ASTM International, 1996: 710
[3] Garde A. In: Limbak M, Bareris P eds., Zirconium in the Nuclear Industry,16th International Symposium, ASTM STP 1529, West Conshonocken: ASTM International, 2010: 9
[4] Pahutova M, Kucharova K, Cadek J. Mater Sci Eng, 1977; 27: 239
[5] Pahutova M, Cadek J. Mater Sci Eng, 2004; 33: 1362
[6] Chun Y B, Hwang S K, Kim M H, Kwun S I, Kim Y S. J Nucl Mater, 1999; 265: 28
[7] Isobe T, Matsuo Y. In: Eucken C M, Garde A M eds.,Zirconium in the Nuclear Industry, 9th International Symposium, ASTM STP 1132,West Conshonocken: ASTM International, 1991: 346
[8] Chun Y B, Hwang S K, Kwun S I, Kim M H. Scr Mater, 1999; 40: 1165
[9] Lee J H, Hwang S K, Yasuda K, Kinoshita C. J Nucl Mater, 2001; 289: 334
[10] Moon J R, Lees D G. Corros Sci, 1970; 10: 85
[11] Moon J R, Evans E W. Corros Sci, 1969; 9: 323
[12] Lee J H, Hwang S K. J Nucl Mater, 2003; 321: 238
[13] George P S, Robert J C, Umesh P N. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Syposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 525
[14] Motta A T, Aylin Y, Marcelo J G, Comstock R J, Was G S, Busby J T,Gartner E, Peng Q J, Jeong Y H, Park J Y. J Nulc Mater, 2007; 371: 61
[15] Wang J, Long C S, Xiong J, Miao Z, Fang H Y, Huang Z H, Ying S H. Nucl Power Eng,2009; 30: 58
(王均, 龙冲生, 熊计, 苗志, 范洪远, 黄照华, 应诗浩. 核动力工程, 2009; 30: 58)
[16] Yao M Y, Wang J H, Peng J C, Zhou B X, Li Q. In: Limbak M, Bareris P eds.,Zirconium in the Nuclear Industry, 16th International Symposium, ASTM STP 1529, West Conshonocken:ASTM International, 2011: 466
[17] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163
(李士炉, 姚美意, 张欣, 耿建桥, 彭建超, 周邦新. 金属学报, 2011; 47: 163)
[18] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865
(姚美意, 李士炉, 张欣, 彭建超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[19] Barberis P, Merle-Mejean T, Quintard P. J Nulc Mater, 1997; 246: 232
[20] Barberis P, Corroleur T G, Guinbretiere R, Merle M T, Mirgorodsky A,Quintard P. J Nulc Mater, 2001; 288: 241
[21] Godlewski J, Gross J P, Lambertin M, Wadier J F, Weidinger H. In:Eucken C M, Garde A M eds., Zirconium in the Nuclear Industry, 9th International Symposium,ASTM STP 1132, West Conshonocken: ASTM International, 1991: 416
[22] Liu J Z ed. Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 27
(刘建章~ 主编. 核结构材料. 北京: 化学工业出版社, 2007: 27)
[23] Li Q, Zhou B X, Yao M Y, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1358
(李强, 周邦新, 姚美意, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1358)
[24] IAEA-TECDOC-996. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. Vienna, IAEA, 1998: 9
[25] Jong H B, Yong H J. J Nulc Mater, 2000; 280: 235
[26] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kamenzind B, Limback M eds.,Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505,West Conshonocken: ASTM International, 2009: 360
[27] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009
(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[1] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
[2] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[3] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[4] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[5] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[6] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[7] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[8] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[9] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[10] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[11] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[12] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[13] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[14] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[15] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.