Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 341-350    DOI: 10.3724/SP.J.1037.2012.00636
  论文 本期目录 | 过刊浏览 |
BGA结构Sn-3.0Ag-0.5Cu/Cu焊点低温回流时界面反应和IMC生长行为
周敏波,马骁,张新平
华南理工大学材料科学与工程学院, 广州 510640
THE INTERFACIAL REACTION AND INTERMETALLIC COMPOUND GROWTH BEHAVIOR OF BGA STRUC-TURE Sn-3.0Ag-0.5Cu/Cu SOLDER JOINT AT LOW REFLOW TEMPERATURES
ZHOU Minbo, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

周敏波,马骁,张新平. BGA结构Sn-3.0Ag-0.5Cu/Cu焊点低温回流时界面反应和IMC生长行为[J]. 金属学报, 2013, 49(3): 341-350.
ZHOU Minbo, MA Xiao, ZHANG Xinping. THE INTERFACIAL REACTION AND INTERMETALLIC COMPOUND GROWTH BEHAVIOR OF BGA STRUC-TURE Sn-3.0Ag-0.5Cu/Cu SOLDER JOINT AT LOW REFLOW TEMPERATURES[J]. Acta Metall Sin, 2013, 49(3): 341-350.

全文: PDF(1230 KB)  
摘要: 

采用差示扫描量热法将焊点的熔化行为表征与焊点回流焊工艺相结合, 研究了球栅阵列(BGA)结构单界面Sn-3.0Ag-0.5Cu/Cu微焊点在钎料熔化温度附近等温时效形成局部熔化焊点时的界面反应及界面金属间化合物(IMC)的生长行为. 结果表明, 在钎料熔点217 ℃时效时,焊点中钎料基体仅发生界面局部熔化; 而在稍高于熔点的218 ℃时效时, 焊点钎料基体中全部共晶相和部分β-Sn相发生熔化,且Cu基底层的消耗量显著增大, 绝大部分Cu基底直接溶蚀进入钎料基体并导致界面IMC净生长厚度相对217 ℃时效时减小; 等温时效温度升高至230 ℃时, 焊点中钎料基体全部熔化, 界面IMC厚度达到最大值.界面IMC的生长动力学研究结果表明, 界面Cu6Sn5和Cu3Sn层的生长分别受晶界扩散和体积扩散控制, 但界面IMC层的晶界凹槽、晶粒粗化和溶蚀等因素对其生长行为也有明显影响.

关键词 无铅微焊点界面反应金属间化合物生长动力学差示扫描量热法    
Abstract

In recent years, the electronic packaging technologies have become more diversified and sophisticated, and among these technologies the interfacial metallurgical reaction between the solder and metallic substrate is significantly different from each other. However, in contrast to plenty of studies about the microstructure evolution in solder joints prepared by the conventional soldering processes, such as wave soldering and reflow soldering in surface mount technology (SMT), relatively little is known about the solder's melting feature, interfacial mass transition and metallurgical reaction as well as dissolution behavior of the under bump metallization (UBM) in the micro-scale solder joints manufactured by using the novel soldering technologies, for example, the local melting reflow process. In this study, the differential scanning calorimetry (DSC) experimental approach was employed to simulate the local melting reflow soldering process, and the melting behavior of ball grid array (BGA) structure Sn-3.0Ag-0.5Cu/Cu joints, the interfacial reaction and intermetallic compound (IMC) growth behavior of the joints during the liquid isothermal aging at the temperatures near or above the solder's melting point were studied systematically. Results showed that only a part of the solder matrix adjacent to the interface of the joints melted during the liquid isothermal aging at the solder's melting point of 217 ℃. Then, a slight increase of the aging temperature from 217 ℃ up to 218 ℃ has a significant influence on the melting status of the solder matrix and the Cu substrate consumption during isothermal aging process, that is, all the eutectic phases and partial β-Sn phase in the solder matrix melted, and the proportion of the Cu substrate dissolved into the Sn matrix in the total consumption of Cu substrate also increased greatly. However, the thickness of the interfacial Cu6Sn5 layer and total Cu-Sn IMC layer had a slight decrease due to the fact that Cu substrate rapidly dissolved into the solder matrix and resulted in less supply of Cu in the growth of interfacial IMC layers. When the aging temperature was increased to 230 ℃, the content of Cu in the solder matrix nearly reached saturation, and the thickness of interfacial Cu-Sn IMC layers also reached the highest value. The results of interfacial IMCs growth kinetics show that the growth of the interfacial Cu6Sn5 and Cu3Sn is mainly controlled by grain boundary diffusion and bulk diffusion, respectively; and the grain boundary grooving and grain coarsening can also influence the growth kinetics of the interfacial Cu-Sn IMCs.

Key wordslead-free solder joint    interfacial reaction    intermetallic compound    growth kinetics    differential scanning calorimetry
收稿日期: 2012-10-24     
基金资助:

国家自然科学基金项目51275178和高等学校博士点科研基金项目20110172110003资助

作者简介: 周敏波, 男, 1981年生, 讲师, 博士

[1] Zeng K, Tu K N.Mater Sci Eng, 2002; R38: 55


[2] Chan Y C, Yang D.Prog Mater Sci, 2010; 55: 428

[3] Ulrich R K, Brown W D.Advanced Electronic Packaging. 2nd Ed., New York: IEEE Press, 2004: 1

[4] Bernstein L.J Electrochem Soc, 1966; 113: 1282

[5] Bosco N S, Zok F W.Acta Mater, 2004; 52: 2965

[6] Bosco N S, Zok F W.Acta Mater, 2005; 53: 2019

[7] Xu H B, Li M Y, Fu Y G, Wang L, Kim J.Solder Surf Mount Technol, 2009; 21: 45

[8] Xu H B, Li M Y, Kim J, Kim D.J Mater Process Technol, 2009; 209: 2781

[9] Tu K N.Mater Chem Phys, 1996; 46: 217

[10] Tu K N, Zeng K.Mater Sci Eng, 2001; R34: 1

[11] Laurila T, Vuorinen V, Paulasto-Krockel M.Mater Sci Eng, 2010; R68: 1

[12] Kajihara M.Acta Mater, 2004; 52: 1193

[13] Li J F, Agyakwa P A.Acta Mater, 2010; 58: 3429

[14] Li X P, Zhou M B, Xia J M, Ma X, Zhang X P.Acta Metall Sin, 2011; 47: 611

(李勋平, 周敏波, 夏建民, 马骁, 张新平. 金属学报, 2011; 47: 611)

[15] Shen J, Chan Y C, Liu S Y.Acta Mater, 2009; 57: 5196

[16] Onishi M, Fujibuchi H.Trans Jpn Inst Met, 1975; 16: 539

[17] Schaefer M, Fournelle R A, Liang J.J Electron Mater, 1998; 27: 1167

[18] Vianco P T, Hlava P, Kilgo A.J Electron Mater, 1994; 23: 583

[19] Mei Z, Sunwoo A, Morris J.Metall Mater Trans, 1992; 23A: 857

[20] Vianco P T, Erickson K L, Hopkins P L.J Electron Mater, 1994; 23: 721

[21] Erickson K L, Hopkins P L, Vianco P T.J Electron Mater, 1994; 23: 729

[22] Deng X, Piotrowski G, Williams J J, Chawla N.J Electron Mater, 2003; 32: 1403

[23] Li J F, Agyakwa P A, Johnson C M.Acta Mater, 2010; 58: 3429

[24] Zeng K, Stierman R, Chiu T C, Edwards D, Ano K, Tu K N.J Appl Phys, 2005; 97: 024508

[25] Tu K N, Thompson R D.Acta Metall, 1982; 30: 947

[26] Ghosh G.Acta Mater, 2000; 48: 3719

[27] Ma D, Wang W D, Lahiri S K.J Appl Phys, 2002; 91: 3312

[28] Moon K W, Boettinger W J, Kattner U R, Biancaniello F S, Handwerker C A.J Electron Mater, 2000; 29: 1122

[29] Loomans M, Fine M.Metall Mater Trans, 2000; 31A: 1155

[30] Boettinger W J, Johnson C E, Bendersky L A, Moon K W, Williams M E, Stafford G R.Acta Mater, 2005; 53: 5033
[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[4] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[6] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[8] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[9] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[10] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[11] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[13] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[14] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[15] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.