Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 483-488    DOI: 10.3724/SP.J.1037.2012.00620
  论文 本期目录 | 过刊浏览 |
δ相对GH4169合金高温拉伸变形行为的影响
张海燕1),张士宏2),程明2)
1) 宁波工程学院机械工程学院, 宁波 315016
2)中国科学院金属研究所, 沈阳 110016)
EFFECT OF δ PHASE ON THE TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY AT HIGH TEMPERATURE
ZHANG Haiyan1),ZHANG Shihong2), CHENG Ming2)
1)School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315016
2)Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张海燕,张士宏,程明. δ相对GH4169合金高温拉伸变形行为的影响[J]. 金属学报, 2013, 29(4): 483-488.
ZHANG Haiyan, ZHANG Shihong, CHENG Ming. EFFECT OF δ PHASE ON THE TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY AT HIGH TEMPERATURE[J]. Acta Metall Sin, 2013, 29(4): 483-488.

全文: PDF(2016 KB)  
摘要: 

针对GH4169合金的Delta工艺, 通过950 ℃高温拉伸实验研究了δ相对GH4169合金的高温拉伸变形行为的影响. 结果表明: 初始δ相含量为8.21%的GH4169合金的拉伸应力-应变曲线为典型的弹性-均匀塑性型; 且在均匀塑性变形阶段表现为2个不同的变形阶段, 其中第1阶段的加工硬化指数n为0.494, 大于第2阶段的加工硬化指数0.101; 其拉伸断裂机制为延性断裂的微孔聚集型断裂机制, 其中δ相和碳化物是变形断裂中微孔形成的核心, 因此δ相的存在使得合金的高温塑性降低, 在GH4169合金的Delta工艺中必须控制δ相的析出含量.

关键词 GH4169合金δDelta工艺加工硬化    
Abstract

GH4169 alloy is an important material used for aviation and aerospace engines because of its excellent mechanical properties in the temperature range from -253 ℃ to 650 ℃. In order to improve the safety and reliability of engines, it is crucial to obtain the forging with a uniform and fine microstructure. Generally, theforgings with large size and complex shape, such as turbine disks and engine shafts, are manufactured by multi-stage hot working processes. In addition, the microstructure of the alloy is sensitive to the hot deformation parameters. Therefore, the defects of coarse grain and duplex grain always appear in the forgings. As the δ phase in the alloy can control grain growth through the strong pinning effect, the Delta process (DP) has been developed, which uses an intentional δ phase precipitation cycle and subsequent thermomechanical processing to produce uniform fine grain billet and bar stock. In this work, for the DP of GH4169 alloy, the effect of δ phase on the tensile deformation behavior of GH4169 alloy at high temperature was studied by the tensile tests at 950 ℃. The result indicated that the tensile stress-strain curve of the GH4169 alloy with 8.21% pre-precipitated δ phase was the elastic-uniform plastic curve, and there were two different deformation processes during the uniform plastic deformation stage. The strain hardening exponent in the first deformation process was 0.494, which was higher than 0.101 in the second  process. The fracture mechanism for the pre-precipitated δ phase alloy was microvoid coalescence ductile fracture, and the δ phase and carbide were the nucleuses for the formation of micropores. Thus, the existence of the δ phase made the high-temperature plasticity of GH4169 alloy decrease, and the content of the pre-precipitated δ phase must be controlled in the DP of GH4169 alloy.

Key wordsGH4169 alloy    δ phase, Delta process    workhardening
收稿日期: 2012-10-17     
基金资助:

浙江省自然科学基金项目LQ12E05001和宁波市自然科学基金项目2011A610157资助

作者简介: 张海燕, 女, 1981年生, 博士, 讲师

[1] Hiroaki Y, Takeshi H, Tomohisa H, Sachihiro I, Hideaki S. In: Cesar J M A, Santos A D eds.,Proc 9th Int Conf on Numerical Methods in Industrial Processses, Porto,Portugal, 2007: 987


[2] Ruiz C, Obabueki A, Gillespie K. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T,Kissinger R D, Klarstrom D L eds.,  Superalloys 1992, Warrendale, PA: TMS, 1992: 33

[3] Banik T, Mancuso S O, Maurer G E. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 1994: 273

[4] Dix A W, Hyzak J M, Singh R P. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T,Kissinger R D, Klarstrom D L eds.,  Superalloys 1992, Warrendale, PA: TMS, 1992: 23

[5] Bhowal P R, Schirra J J. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 2001: 193

[6] Lu H J, Yao C G, Zhang K F, Jia X C.  Mater Mech Eng, 2003; 27(1): 15

(吕宏军, 姚草根, 张凯峰, 贾新朝. 机械工程材料, 2003; 27(1): 15)

[7] Luo Z J, Tang H, Zeng F C, Guo N C.  J Mater Process Technol, 1991; 28: 383

[8] Liu D, Luo Z J.  Chin J Rare Met, 2005; 29: 152

(刘东, 罗子健. 稀有金属, 2005; 29: 152)

[9] Yuan H, Liu W C.  Mater Sci Eng, 2005; A408: 281

[10] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M.  J Alloys Compd, 2009; 44: 341

[11] Wang Y, Shao W Z, Zhen L, Zhang B Y.  Mater Sci Eng, 2011; A528: 3218

[12] Cai D Y, Zhang W H, Nie P L, Liu W C, Yao M.  Mater Charact, 2007; 58: 220

[13] Desvallees Y, Bouzidi M, Bois F, Beaude N. In: Loria E A ed.,Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 281

[14] Zhang Y, Huang X B, Wang Y, Yu W C, Hu Z Q. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1997: 229

[15] Zhao D, Chaudhury P K. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 1994: 303

[16] Sundararaman M, Mukhopadhyay P, Banerjee S. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 419

[17] Thomas A, El-Wahabi M, Cabrera J M, Prado J M.  J Mater Process Technol, 2006; 177: 469

[18] Cheng M, Zhang H Y, Zhang S H.  J Mater Sci, 2012; 47: 251

[19] Liu W C, Xiao F R, Yao M.  J Mater Lett, 1997; 16: 769

[20] Liu W C, Xiao F R, Yao M, Yuan H.  J Mater Sci Lett, 1998; 17: 245

[21] Wang Y, Shao W Z, Zhen L, Yang C, Zhang X M.  J Alloys Compd, 2009; 471: 331

[22] Liu H W.  Mechanics of Materials I. 5th Ed., Beijing: Higher Education Press, 2011: 20

(刘鸿文. 材料力学I. 第5版, 北京: 高等教育出版社, 2011: 20)

[23] Hollomon J H.  Trans AIME, 1945; 162: 268

[24] Liu J K, Jin M, Jiang Z H, Zhang L J.  Chin J Mech Eng, 1990; 26(5): 71

(刘景科, 金满, 江中浩, 张连进. 机械工程学报, 1990; 26(5): 71)

[25] Cai M H, Ding H, Zhang J S, Li L, Tang Z Y.  Chin J Mater Res, 2009; 23: 83

(蔡明晖, 丁桦, 张建苏, 李龙, 唐正友. 材料研究学报, 2009; 23: 83)

[26] Sundararaman M, Mukhopadhyay P, Banerjee S.  Metall Trans, 1988; 19A: 453

[27] Collier J P, Wong S H, Phillips J C, Tien J K.  Metall Trans, 1988; 19A: 1657

[28] Cui Z Q.  Metallography and Heat Treatment. Beijing: China Machine Press, 2001: 183

(崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 2001: 183)

[29] Pan J S, Tong J M, Tian J M.  Fundamentals of Material Science.Beijing: Tsinghua University Press, 1998: 200

(潘金生, 仝健民, 田健民. 材料科学基础. 北京: 清华大学出版社, 1998: 200)

[30] Liu R T, Liu W B, Liu J Y.  Mechanical Property of Engineering Material. Harbin: Harbin Institute of Technology Press, 2001: 45

(刘瑞堂, 刘文博, 刘锦云. 工程材料力学性能. 哈尔滨: 哈尔滨工业大学出版社, 2001: 45)

[31] Chen W, Chaturvedi M C. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 1994: 567

[32] Zhang H Y, Zhang S H, Cheng M.  Acta Metall Sin, 2009; 45: 1451

(张海燕, 张士宏, 程明. 金属学报, 2009; 45: 1451)
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[4] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[5] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[6] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[9] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[10] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[11] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[12] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[13] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[14] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[15] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.