Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 365-371    DOI: 10.3724/SP.J.1037.2012.00556
  论文 本期目录 | 过刊浏览 |
界面追踪法研究界面能各向异性对定向凝固枝晶生长的影响
彭东剑,林鑫,张云鹏,郭雄,王猛,黄卫东
西北工业大学凝固技术国家重点实验室, 西安 710072
INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION
PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

彭东剑,林鑫,张云鹏,郭雄,王猛,黄卫东. 界面追踪法研究界面能各向异性对定向凝固枝晶生长的影响[J]. 金属学报, 2013, 49(3): 365-371.
PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong. INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION[J]. Acta Metall Sin, 2013, 49(3): 365-371.

全文: PDF(631 KB)  
摘要: 

运用基于界面追踪法的数值自洽模型研究了界面能各向异性对定向凝固枝晶生长的影响. 模拟结果表明,对于给定的凝固条件, 对应不同的一次间距P eclect数范围, 存在2个不同的界面形态解区间, 其中较小的间距P eclect数解区间对应的界面形态类似胞状晶, 较大的间距P eclect数解区间对应的界面形态类似枝状晶, 界面能各向异性的增大有利于枝晶解区间的扩大. 同时, 枝晶生长的尖端临界稳定性参数σ*与界面能各向异性参数E4存在幂指数关系, 并基于Fisher枝晶扩散解, 得到包含界面能各向异性参数的枝晶尖端半径表达式: RIMS=2.5646[гDL/Vk0T0]0.5E4-0.1905,△T0=mC0(k0-1)/k0; 界面能各向异性增大, 枝晶生长界面前沿过冷度减小. 枝晶生长稳态一次间距的选择主要取决于枝晶间溶质扩散场的相互作用, 而由于界面能各向异性在枝晶尖端作用的局域化, 使得界面能各向异性对定向凝固稳态一次枝晶间距影响较小.

关键词 界面能各向异性定向凝固枝晶尖端半径一次间距    
Abstract

The dendritic growth with the different solid/liquid (S/L) interface energy anisotropies in theunidirectional solidification has been investigated using the self-consistent front tracking model. It is found that,for a given solidification condition, there were two kind of interface shape solutions with the different spacing Peclect number ranges. The interface shape with the small spacing Peclect number range was similar with cellular tip, and that with the large spacing Peclect number range referred to dendritic tip.The higher S/L interface energy anisotropy was in favor of the widening of the dendritic growth solution range. There was a certain power exponential relationship between the dendritic tip marginal stability parameterσ* and the S/L interface energy anisotropic parameter E4. A modified Fisher dendritic tip solution, which considered the effect of S/L interface energy anisotropy, was obtained as follows: RIMS=2.5646[гDL/Vk0T0]0.5E4-0.1905,△T0=mC0(k0-1)/k0. The undercooling in front of the S/L interface decreased with increasing the anisotropic parameter. The primary dendritic spacing mainly depended on the interaction of solute diffusion field between the adjacent dendrite, and the S/L interface energy had little influence on the primary dendritic spacing due to its localized effect on the solute diffusion field near the dendritic tip.

Key wordsinterface energy anisotropy    unidirectional solidification    dendritic tip radius    primary spacing
收稿日期: 2012-09-21     
基金资助:

国家自然科学基金项目50971102和50901061及国家重点基础研究发展计划项目2011CB610402资助

作者简介: 彭东剑, 男, 1988年生, 硕士生

[1] Kessler D A, Koplik J, Levine H.Adv Phys, 1988; 37: 255


[2] Kessler D A, Levine H.Phys Rev, 1986; 33B: 7867

[3] Barbieri A, Hong D C, Langer J S.Phys Rev, 1987; 35A: 1802

[4] Xu J J.Phys Rev, 1991; 43A: 930

[5] Xu J J, Pan Z X.J Cryst Growth, 1993; 129: 666

[6] Xu J J.Phys Rev, 1996; 53E: 5051

[7] Kurz W, Fisher D J.Acta Metall, 1981; 29: 11

[8] Hunt J D, McCartney D G.Acta Metall, 1987; 35: 89

[9] Trivedi R.J Cryst Growth, 1980; 48: 93

[10] Langer J S, Muller-Krumbhaar H.Acta Metall, 1978; 26: 1681

[11] Muller-Krumbhaar H, Langer J S.Acta Metall, 1978; 26: 1697

[12] Chalmers B.Principle of Solidification. New York: Wiley, 1964: 105

[13] Shan B W, Huang W D, Lin X, Wei L.Acta Metall Sin, 2008; 40: 1042

(单博伟, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 40: 1042)

[14] Utter B, Bodenschatz E.Phys Rev, 2005; 72E: 011601

[15] Li C X, San J C, Guo T M, Wang H, Wang F X.J Synthetic Cryst, 2005; 34: 870

(李晨希, 伞晶超, 郭太明, 王宏, 王凤翔. 人工晶体学报, 2005; 34: 870)

[16] Wang Z J.PhD Disertation, Northwestern Polytechnical University, Xi'an, 2009

(王志军. 西北工业大学博士学位论文, 西安, 2009)

[17] Lu S Z, Hunt J D.J Cryst Growth, 1992; 123: 17

[18] Lin X, Li Y M, Liu Z X, Li T, Huang W D.Sci Technol Adv Mater, 2001; 2: 293

[19] Patankar S V.Numerical Heat Transfer and Fluid Flow. London: Hemisphere Publishing Corp, 1970: 30

[20] McCartney D G, Hunt J D.Metall Trans, 1984; 15A: 983

[21] Lipton J, Glicksman M E, Kurz W.Metall Trans, 1987; 18A: 341

[22] Somboonsuk K, Mason J T, Trivedi R.Metall Trans, 1984; 15A: 967

[23] Burden M H, Hunt J D.J Cryst Growth, 1974; 22: 109

[24] Karma A, Sarkissian A.Metall Mater Trans, 1996; 27A: 635

[25] Hunziker O, Vandyoussefi M, Kurz W.Acta Mater, 1998; 46: 6325

[26] Langer J S.Rev Mod Phys, 1980; 52: 1

[27] Warren J A, Langer J S.Phys Rev, 1993; 47E: 2702

[28] Langer J S, Muller-Krumbhaar H.J Cryst Growth, 1977; 42: 11

[29] Kurz W, Fisher D J.Acta Metall, 1981; 29: 11

[30] Trivedi R.J Cryst Growth, 1980; 48: 93

 
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[7] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[10] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[11] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[12] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[13] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[14] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[15] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.