Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 297-302    DOI: 10.3724/SP.J.1037.2012.00507
  论文 本期目录 | 过刊浏览 |
连续铸造法制备3003/4004铝合金复层圆铸坯
李继展1付莹1,接金川1,赵佳蕾1,Joonpyo Park2,Jongho Kim2,李廷举1
1) 大连理工大学材料与科学工程学院, 大连 116024
2) 浦项产业科学研究院, 浦项790--600, 韩国
CONTINUOUS CASTING OF THE CLADDING 3003/4004 ALUMINUM ALLOY CIRCULAR INGOT
LI Jizhan1, FU Ying1, JIE Jinchuan1, ZHAO Jialei1, Joonpyo Park2, Jongho Kim 2,LI Tingju1
1) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2) Research Institute of Industrial Science and Technology (RIST), Pohang 790--600, Korea
引用本文:

李继展,付莹,接金川,赵佳蕾,Joonpyo Park,Jongho Kim,李廷举. 连续铸造法制备3003/4004铝合金复层圆铸坯[J]. 金属学报, 2013, 49(3): 297-302.
LI Jizhan, FU Ying, JIE Jinchuan, ZHAO Jialei, Joonpyo Park, Jongho Kim, LI Tingju. CONTINUOUS CASTING OF THE CLADDING 3003/4004 ALUMINUM ALLOY CIRCULAR INGOT[J]. Acta Metall Sin, 2013, 49(3): 297-302.

全文: PDF(865 KB)  
摘要: 

采用直接水冷连续铸造法制备了3003/4004铝合金复层圆铸坯, 使用OM, SEM和EPAM对复层铸锭界面凝固组织及元素分布进行了系统的检测, 并对3003/4004铝合金复层铸坯进行拉伸实验, 分析其界面结合强度. OM结果表明, 直接水冷连续铸造法所制备的3003/4004铝合金复层圆铸坯界面清晰, 无气孔、夹杂等缺陷, 整个铸锭断面大部分为等轴晶组织. 利用EPAM对结合界面进行线扫描分析, 结果表明, 3003和4004铝合金溶质元素间发生了相互扩散, 形成厚度约为30μm的扩散层. 复层铸坯拉伸实验结果表明, 3个拉伸试样都在强度较低的3003铝合金一侧断裂, 试样抗拉强度为107.7 MPa, 说明复层铸坯界面结合强度高于3003铝合金抗拉强度, 界面结合牢固.

关键词 复层铸坯连续铸造界面形貌界面结合强度    
Abstract

Cladding metals have been widely applied to many fields because they have many excellentphysical, chemical and mechanical properties that can not be obtained from the single metals. There are manyconventional processes for manufacturing cladding metals, for example roll bonding, diffusion bonding, explosivewelding, extrusion cladding and casting cladding. Among these processes, continuous casting is an ideal processto prepare cladding metals which has the advantages of high production efficiency, low production cost and goodinterface bonding. This process can make two metals contact directly by the ways of one liquid-one liquid, oneliquid-one solid or one liquid-one semi-solid and then the good metallurgical bonding can be obtained. So, thisprocess is extensively studied by researchers engaging in material processing. The process of the directwater-cooled continuous casting to fabricate cladding 3003/4004 aluminum alloy circular ingot is researched inthis paper. The 3003 aluminum alloy has excellent corrosion resistance, low strength and high melting point, whilethe 4004 aluminum alloy has poor corrosion resistance, high strength and low melting point. The cladding3003/4004 aluminum alloy material can combine the advantages of two metals and can be widely used in manyfields, especially in car engine and air conditioning heat sink. To obtain the good interface bonding, a special innermold with the single-side cooling capability was applied in this process. By the special inner mold, the two alloyscan make the contact of one liquid-one solid or one liquid-onesemi-solid on the interface. The solidification structure and elemental distribution near the interfaceof cladding ingot were systematically detected by OM, SEM and EPAM. Tensile test was carried out to evaluate theinterface bonding strength. The OM results indicated thatthe interface of cladding 3003/4004 aluminum alloy ingot was clear without gas holes and slag inclusion. Mostgrains were equiaxed in the cross-section of cladding 3003/4004 aluminum alloy circular ingot. The EPAM resultssuggested that the interdiffusion of alloy elements in 3003 and 4004 alloy occurred and there was an about 30μmwide diffusion layer near the interface. The entire tensile specimen fractured in the sides of 3003 alloy with theaverage ultimate tensile strength of 107.7 MPa, indicating that the interface bonding strength of cladding ingotwas higher than the ultimate tensile strength of 3003 alloy and the good metallurgical bonding near the interface wasobtained by this process.

Key wordscladding ingot    continuous casting    interface morphology    interface bonding strength
收稿日期: 2012-08-30     
基金资助:

国家自然科学基金资助项目51074031

作者简介: 李继展, 男, 1987年生, 硕士生 10.3724/SP.J.1037.2012.00507

[1] Sun J B, Song X Y, Wong T M, Yu Y S, Sun M, Cao Z Q, Li T J.Mater Lett, 2012; 67: 21


[2] Peng X K, Heness G, Yeung W Y.J Mater Sci, 1999; 34: 277

[3] Manesh H D, Taheri A K.Mech Mater, 2005; 37: 531

[4] Eizadjou M, Manesh H D, Janghorban K.Mater Des, 2008; 29: 909

[5] Wang T M, Li J, Du Y Y, Yang Z M, Sun J B, Cai H W, Xu J J, Li T J.Mater Res Inn, 2010; 14: 271

[6] Xiong B W, Cai C C, Wan H, Lu B P.Mater Des, 2011; 32: 2978

[7] Ramazan K, Mustafa A.J Mater Proc Technol, 2004; 152: 91

[8] Akbari--Mousavi S A A, Barrett L, Al--Hassani S T S.J Mater Proc Technol, 2008; 202: 224

[9] Ahmet D, Behcet G, Fehim F.Mater Des, 2005; 26: 497

[10] Liu D Y, Liu S C, Chen R S, Wang X F.Trans Mater Heat Treat, 2007; 28: 110

(刘德义, 刘世程, 陈汝淑, 王晓峰. 材料热处理学报, 2007; 28: 110)

[11] Qu S J, Geng L, Cao G J, Lei T Q.Acta Mater Compos Sin, 2003; 20(3): 69

(曲寿江, 耿林, 曹国剑, 雷廷权. 复合材料学报, 2003; 20(3): 69)

[12] Takeuchi E, Zene M.Iron Steel, 1997; 24: 257

[13] Wang Z T.Light Alloy Fabr Technol, 2007; 35: 1

(王祝堂. 轻合金加工技术, 2007; 35: 1)

[14] Zhang W W, Zou G F, Deng C N.Acta Metall Sin, 1998; 34: 609

(张卫文, 邹敢峰, 邓长宁. 金属学报, 1998; 34: 609)

[15] Zhang W W, Rohatgi P K, Shao M, Li Y Y.Mater Sci Eng, 2009; A505: 120

[16] Wu C J, Yu Z M, Xie J X, Wu Y.Foundry, 2004; 53: 432

(吴春京, 于治民, 谢建新, 吴渊. 铸造, 2004; 53: 432)

[17] Xie J X, Wu C J, Zhou C.Chin Pat, 01109076.6, 2002

(谢建新, 吴春京, 周成. 中国专利, 01109076.6, 2002)

[18] Xue Z Y, Qin Y Q, Wu C J.J Univ Sci Technol Beijing, 2005; 27: 706

(薛志勇, 秦延庆, 吴春京. 北京科技大学学报, 2005; 27: 706)

[19] Xue Z Y, Wu C J, Xie J X.Spec Cast Nonferrous Alloys, 2006; 26: 101

(薛志勇, 吴春京, 谢建新. 特种铸造及有色合金, 2006; 26: 101)

[20] Xu F, Zhang W W, Luo Z Q, Kang Z X.Spec Cast Nonferrous Alloys, 2007; 27: 624

(许峰, 张卫文, 罗宗强, 康志新. 特种铸造及有色合金, 2007; 27: 624)

[21] Song X Y, Sun J B, Zhong D S, Yu Y S, Wang T M, Cao Z Q, Li T J.Mater Res Inn, 2012; 16: 51

[22] Cao Z Q, Liu B, Sun J B, Song X Y, Sun M, Wang T M, Li T J.J Wuhan Univ Sci Technol, 2012; 35: 19

(曹志强, 刘彬, 孙建波, 宋晓阳, 孙敏, 王同敏, 李廷举. 武汉科技大学学报, 2012; 35: 19)

[23] Wu C H.Master Thesis, Dalian University of Technology, 2005

(吴彩虹. 大连理工大学硕士学位论文, 2005)

[24] Li Y T.Master Thesis, Dalian University of Technology, 2003

(李玉婷. 大连理工大学硕士学位论文, 2003)

[25] Zhang X Z, Na X Z, Wang Z Y, Liu A Q, Gan Y.Acta Metall Sin, 2004; 40: 281

(张兴中, 那贤昭, 王忠英, 刘爱强, 干勇. 金属学报, 2004; 40: 281)
[1] 秦勤, 李程, 何流, 叶陈龙, 臧勇. 基于非对称双悬臂梁模型优化的双金属板界面结合强度研究[J]. 金属学报, 2020, 56(12): 1617-1628.
[2] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[3] 刘奋军, 傅莉, 张纹源, 孟强, 董春林, 栾国红. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51(3): 281-288.
[4] 李小飞,郭喜平. 定向凝固Nb-Ti-Si基超高温合金的共晶组织形貌演化[J]. 金属学报, 2013, 49(7): 853-862.
[5] 王勇 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响[J]. 金属学报, 2010, 46(4): 506-512.
[6] 何永胜 郭喜平 郭海生 孙志平. 铌硅化物基超高温合金整体定向凝固组织和固/液界面形态演化[J]. 金属学报, 2009, 45(9): 1035-1041.
[7] 王平; 崔建忠 . 近液相线法铸造非枝晶A356合金组织与成形性能[J]. 金属学报, 2002, 38(9): 952-955 .
[8] 贾非; 金俊泽; 曹志强; 张兴国; 郝海 . 电磁铸造对2024铝合金力学性能和组织的影响[J]. 金属学报, 2002, 38(4): 393-396 .
[9] 张志峰; 李廷举; 金俊泽 . 复合电磁场作用下连铸金属液弯月面运动规律的热模拟研究[J]. 金属学报, 2001, 37(9): 975-979 .
[10] 张勤; 路贵民; 崔建忠; 张北江 . CREM法半连续铸造Al合金非枝晶组织的形成机制[J]. 金属学报, 2001, 37(8): 873-876 .
[11] 周月明; 佐佐健介; 浅井滋生 . 间歇式高频磁场作用下保护渣浸入深度的计算模型[J]. 金属学报, 2001, 37(7): 772-776 .
[12] 马颖; 郝远; 阎峰云; 刘洪军 . Zn-Al合金热型连铸定向凝固的晶体生长机理[J]. 金属学报, 2001, 37(2): 202-206 .
[13] 路贵民; 董杰; 崔建忠; 王平 . 液相线半连续铸造7075Al合金二次加热与触变成形[J]. 金属学报, 2001, 37(11): 1184-1188 .
[14] 路贵民; 董杰; 崔建忠; 常守威 . 7075 Al合金液相线半连续铸造组织及形成机理[J]. 金属学报, 2001, 37(10): 1045-1048 .
[15] 刘国钧; 张奎 . 半固态AlSi7Mg铝合金的连续制备实验与研究[J]. 金属学报, 1999, 35(2): 141-143 .