Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 553-561    DOI: 10.3724/SP.J.1037.2012.00505
  论文 本期目录 | 过刊浏览 |
X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制
王新华1),李秀刚1),李强1),黄福祥1),李海波2),杨建2)
1)北京科技大学冶金与生态工程学院, 北京 100083
2)首钢技术研究院, 北京 100042
CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES
WANG Xinhua1), LI Xiugang1), LI Qiang1), HUANG Fuxiang1),LI Haibo2), YANG Jian2)
1)School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2)Shougang Technical Research Institute, Beijing 100042
引用本文:

王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.
WANG Xinhua, LI Xiugang, LI Qiang, HUANG Fuxiang, LI Haibo, YANG Jian. CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES[J]. Acta Metall Sin, 2013, 49(5): 553-561.

全文: PDF(5133 KB)  
摘要: 

采用转炉-钢包精炼炉-RH真空精炼-钙处理炼钢工艺生产的X80管线钢板中, 条串状B类夹杂物主要为低熔点CaO-Al2O3,其成因主要为: (1) 炉外精炼和钙处理后, 钢液中存在许多微小CaO-Al2O3系液态夹杂物, 连铸过程聚集成较大尺寸夹杂物(10-20μm), 轧制过程中变形为大型条串状夹杂物. (2) 尺寸较大的夹杂物在钢液钙处理时, 外表层转变为高熔点CaO, CaS或CaO-CaS系, 但内部仍为低熔点的CaO-Al2O3, 此类夹杂物在钢板轧制时, 内部仍能够变形, 最终延展为条串状夹杂物. 对X80管线钢板B类夹杂物的控制采用新的策略, 将控制重点由钢液钙处理后去除低熔点CaO-Al2O3系夹杂物, 改为在钙处理前强化去除钢液中夹杂物, 尤其是较大尺寸的夹杂物. 采取新控制策略后, 真空精炼后夹杂物数量大幅度降低, 钙处理效果显著提高, 钢板中检测到的夹杂物全部为高熔点CaO-CaS系夹杂,B类夹杂物评级由以往低于2.0级降低至0级.

关键词 X80管线钢非金属夹杂物B类夹杂物二次精炼钙处理    
Abstract

The string shaped B type non-metallic inclusions in API (American Petroleum Institute) X80 pipeline steel plates, produced by the BOF-LF-RH-Ca treatment steelmaking route, were mainly of CaO-Al2O3 system with lower melting temperatures. The formation reasons are as follows: (1) there existed many small sized liquid inclusions of CaO-Al2O3 system in liquid steel after the secondary refining and Ca treatment. These small inclusions could aggregate to larger ones of 10- 20μm in continuous casting and be deformed into string shaped inclusions in steel plates during rolling. (2) for the larger sized and low melting temperature CaO-Al2O3 inclusions, in Ca treatment, their surface layers could be modified into high melting temperature CaO, CaS or CaO-CaS system, but the centers remained to be CaO-Al2O3 system. During rolling, these inclusions could also be elongated to string typed ones because of their soft CaO-Al2O3 centers. A new strategy for control of B type  inclusions in X80 pipeline steel plates was adopted. The key of the control was shifted from removing low melting temperature inclusions of CaO-Al2O3 system after Ca treatment to remove as much as possible inclusions especially large sized inclusions before the Ca treatment. With the new strategy, the amount of inclusions after RH refining was remarkably decreased and the efficiency of Ca treatment significantly improved. The non-metallic inclusions found in steel plates were all of high melting temperature CaO-CaS system and theseverity of B-type inclusions has been lowered from ≤2.0 to 0.

Key wordsX80 pipeline steel    non-metallic inclusion    B type inclusion    secondary refining    Ca treatment
收稿日期: 2012-08-30     
基金资助:

国家重点基础研究发展计划资助项目2010CB630806

作者简介: 王新华, 男, 1951年生, 教授, 博士

[1] Gatellier D C.  Tetsu-to-Hagane, 1984; 6: 872


[2] Simpson I D, Trit Z S, Moore L G.  Ironmaking Steelmaking, 2003; 30: 158

[3] Carneiro R A, Ratnapuli R C, Lins V C.  Mater Sci Eng, 2003; A357: 104

[4] Tanizawa K, Okumura H.  Proc of the Sixth International Iron and Steel Congress, Nagoya: ISIJ, 1990: 611

[5] Lachmund H, Yongkun X, Klaus H.  Steel Res, 2001; 72: 452

[6] Takahashi D, Kamo M, Kurose Y, Nomura H.  Ironmaking Steelmaking, 2003; 30: 116

[7] Haida O, Emi T, Sanbongi K, Shiraishi T, Fujiwara A.  Tetsu-to-Hagane, 1978; 64: 1538

[8] Holappa L, Helle A S.  J Mater Proc Technol, 1995; 53: 177

[9] Choudhary S K, Ghosh A.  ISIJ Int, 2008; 48: 1552

[10] Numata M, Higuchi Y.  Tetsu-to-Hagane, 2011; 97: 259

[11] Higuchi Y, Numata M, FukagawaS, Shinme K.  ISIJ Int (suppl), 1996; 36: 151

[12] Ye G, Jonsson P, Lund T.  ISIJ Int (suppl), 1996; 36: 105

[13] Holappa L, Hamalainen M, Liukkonen M, Lind M.  Ironmaking Steelmaking, 2003; 30: 111

[14] Lis T.  Metallurgia, 2009; 48: 95

[15] Ito Y, Suda M, Kato Y, Nakato H, Sorimachi K.  ISIJ Int (suppl), 1996; 36: 148

[16] Park J, Kim D, Lee S.  Metall Mater Trans, 2005; 36B: 67

[17] Han Z, Liu L, Lind M, Holappa L.  Acta Metall Sin (Engl Lett), 2009; 19: 1

[18] Lind M, Hollappa L.  Metall Mater Trans, 2010; 41B: 359

[19] Taguchi K, Hideki O. ISIJ Int, 2005; 45: 1572

[20] Vasilij P, Blazenko K, John W.  Hastie Steel Res, 1991; 62: 289

[21] Ye G, Jonsson P, Lund T.  ISIJ Int, 1996; 36: S105

[22] Cho S W, Suito H.  ISIJ Int, 1994; 3: 265

[23] Ohta H, Suito H.  ISIJ Int, 1996; 36: 983

[24] Kushida T, Higuchi Y, Numura M.  Sumitomo Res, 1996; 58(9): 24

[25] Ito Y, Nara S, Kato Y, Suda M.  Tetsu-to-Hagane, 2007; 93: 355

[26] Zhang L.  J Iron Steel Res Inter, 2006; 13: 1

[1] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[2] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[3] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[4] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[5] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[6] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[7] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
[8] 刘智勇 王长朋 杜翠薇 李晓刚. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2011, 47(11): 1434-1439.
[9] 邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.
[10] 陈旭 吴明 何川 肖军. 外加电位对X80钢及其焊缝在库尔勒土壤 模拟溶液中SCC行为的影响[J]. 金属学报, 2010, 46(8): 951-958.
[11] 邓伟 高秀华 秦小梅 赵德文 杜林秀 王国栋. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533-540.
[12] 缪成亮 尚成嘉 王学敏 张龙飞 Mani Subramanian. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546.
[13] 周建龙 李晓刚 杜翠薇 李云玲 李涛 潘莹. X80管线钢在NaHCO3溶液中的阳极电化学行为[J]. 金属学报, 2010, 46(2): 251-256.
[14] 李党国; 朱杰武; 郑茂盛; 冯耀荣; 白真权 . X80管线钢钝化膜的光电化学性能[J]. 金属学报, 2008, 44(6): 739-744 .
[15] 许振明; 李天晓; 周尧和 . 电磁过滤钢液中非金属夹杂物的运动速度和去除效率的理论分析[J]. 金属学报, 2001, 37(4): 423-428 .