Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 137-145    DOI: 10.3724/SP.J.1037.2012.00451
  论文 本期目录 | 过刊浏览 |
不同温度回火后30MnB5热成形钢的EBSD研究
程俊业,赵爱民,陈银莉,董瑞,黄耀
北京科技大学冶金工程研究院, 北京 100083
EBSD STUDIES OF 30MnB5 HOT STAMPING STEEL TEMPERED AT DIFFERENT TEMPERATURE
CHENG Junye, ZHAO Aimin, CHEN Yinli, DONG Rui, HUANG Yao
Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
引用本文:

程俊业,赵爱民,陈银莉,董瑞,黄耀. 不同温度回火后30MnB5热成形钢的EBSD研究[J]. 金属学报, 2013, 49(2): 137-145.
CHENG Junye, ZHAO Aimin, CHEN Yinli, DONG Rui, HUANG Yao. EBSD STUDIES OF 30MnB5 HOT STAMPING STEEL TEMPERED AT DIFFERENT TEMPERATURE[J]. Acta Metall Sin, 2013, 49(2): 137-145.

全文: PDF(6662 KB)  
摘要: 

将30MnB5热成形钢采用淬火+回火处理, 利用电子背散射衍射(EBSD)技术研究了淬火态和不同温度回火后马氏体变体与母相的取向关系及其取向差变化, 采用单个原奥氏体晶粒区域做出的马氏体{100} 极图, 并结合等密度线极图的方法对马氏体变体与母相的取向关系进行了判定. 结果表明, 30MnB5热成形钢淬火后得到的马氏体变体与母相的取向关系更接近N-W关系, 实际极点分布在理论极点周围, 并且经不同温度回火后, 马氏体变体与母相的取向关系没有明显改变, 但变体数目有减少的趋势. 淬火态和不同温度回火后马氏体变体的取向差都主要分布在5°以下和50°以上, 随着回火温度的升高, 小于5°的小角度晶界略微减少, 但仍占较高的比例, 而大于50°的大角度晶界则呈上升趋势. 这些小于5°的小角度晶界主要存在于马氏体变体内部, 源自马氏体板条间的取向差, 是导致不同马氏体变体间的角度离散分布在理论值周围的主要原因.

关键词 30MnB5热成形钢回火电子背散射衍射取向关系取向差    
Abstract

Currently, the senior-level hot stamping steels, such as 30MnB5, could not be used widely in automotive body like 22MnB5 hot stamping steel due to its low plasticity and high hydrogen induced cracking sensitivity after hot stamping. However, its good mechanical properties after tempering processes made it suitable for automotive structural parts. In this paper, the 30MnB5 hot stamping steel was quenched and tempered at 200-600℃ for 2 min. The orientation relationship (OR) with parent phase and misorientation evolution of martensite variants were characterized by EBSD. The OR between martensite variants and parent phase was determined by using {100} pole figure of martensite variants inside a single prior austenite grain and the method of pole figure contouring. The results showed that, the OR between martensite variants and parent phase in 30MnB5 hot stamping steel after quenching was closer to N-W OR than K-S OR, and the actual pole points were distributed around the theoretical pole points. The OR between martensite and parent phase variants did not change in the samples tempered at different temperatures for 2 min, but the number of martensite variants inside a single prior austenite grain tended to decrease. The misorientation of martensite variants after quenched and tempered at different temperatures were both mainly distributed in the angle range of less than 5° and more than 50°. As tempering temperature increased, the low angle grain boundaries below 5° were decreased slightly while the high angle grain boundaries above 50° reflected an upward trend, but the former still accounted for a large percentage. These low angle grain boundaries below 5°, mainly existing inside martensite variants and  derived from the misorientation between martensite laths, were the main reason that led to discrete distribution of angles between different martensite variants around theoretical values.

Key words30MnB5 hot stamping steel    tempering    EBSD    orientation relationship    misorientation
收稿日期: 2012-07-27     
基金资助:

高等学校博士学科点专项科研基金资助项目 20110006110007

作者简介: 程俊业, 男, 1987年生, 博士生

[1] Karbasianm H, Tekkaya A E. J Mater Process Technol, 2010; 210: 2103


[2] Dong W F, Kim H S. Steel Res Int, 2009; 80: 241

[3] Nikravesh M, Naderi M, Akbari G H. Mater Sci Eng, 2012; A540: 24

[4] Abbasi M, Saeed--Akbari A, Naderi M. Mater Sci Eng, 2012; A538: 356

[5] Naderi M, Saeed--Akbari A, Bleck W. Mater Sci Eng, 2008; A487: 445

[6] Lee S J, Ronevich J A, Krauss G, Matlock D K. ISIJ Int, 2010; 50: 294

[7] Wang M Q, Akiyama E, Tsuzaki K. Corros Sci, 2007; 11: 4081

[8] Chen S K, Li Q Y, Miao Z. Rare Met Mater Eng, 2006; 35: 500

(陈绍楷, 李晴宇, 苗壮. 稀有金属材料与工程, 2006; 35: 500)

[9] Naderi M. PhD Dissertation, Nordrhein--Westfalen: RWTH Aachen University, 2007

[10] Suikkanen P P, Cayron C, Anthony J. J Mater Sci Technol, 2011; 27: 920

[11] Hiromoto K, Rintaro U, Masato U. Mater Charact, 2005; 54: 378

[12] Hiromoto K, Rintaro U, Nobuhiro T. Acta Mater, 2006; 54: 1279

[13] Wang S C, Wu Y W, Hua Y. Trans Mater Heat Treat, 2011; 32(1): 43

(王申存, 吴益文, 华沂. 材料热处理学报, 2011; 32(1): 43)

[14] Yang P, Lu F Y, Meng L. Acta Metall Sin, 2010; 46: 657

(杨平, 鲁法云, 孟利. 金属学报, 2010; 46: 657)

[15] Yang P, Lu F Y, Meng L. Acta Metall Sin, 2010; 46: 666

(杨平, 鲁法云, 孟利. 金属学报, 2010; 46: 666)

[16] Wang S C, Li Z C, Yi D Q. J Cent South Univ (Eng Sci), 2011; 42: 2620

(王申存, 李志成, 易丹青. 中南大学学报(自然科学版), 2011; 42: 2620)

[17] Morito S, Huang X, Furuhara T. Acta Mater, 2006; 54: 5323

[18] Xu Z Y. Martensitic Transformation and Martensite. Beijing: Science Press, 1999: 686
[1] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[2] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[3] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[4] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[5] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[6] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[7] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[8] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[9] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[10] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[11] 戎咏华,陈乃录. C同时提高马氏体钢强度和塑性的原理和机制[J]. 金属学报, 2017, 53(1): 1-9.
[12] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[14] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[15] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.