Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1530-1536    DOI: 10.3724/SP.J.1037.2012.00374
  论文 本期目录 | 过刊浏览 |
剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为
赵博1,2,杜翠薇1,2,刘智勇1,2,李晓刚1,2,杨吉可1,2,李月强1,2
1. 北京科技大学腐蚀与防护中心, 北京 100083
2. 北京科技大学腐蚀与防护教育部重点实验室, 北京 100083
CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING
ZHAO Bo 1,2, DU Cuiwei 1,2, LIU Zhiyong 1,2, LI Xiaogang 1,2, YANG Jike 1,2, LI Yueqiang 1,2
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
2. MOE Key Laboratory of Corrosion and Protection, University of Science and Technology Beijing, Beijing 100083
引用本文:

赵博 杜翠薇 刘智勇 李晓刚 杨吉可 李月强. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(12): 1530-1536.
ZHAO Bo DU Cuiwei LIU Zhiyong LI Xiaogang YANG Jike LI Yueqiang. CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING[J]. Acta Metall Sin, 2012, 48(12): 1530-1536.

全文: PDF(4478 KB)  
摘要: 

构建了埋地管线钢在鹰潭土壤模拟溶液中的矩形缝隙剥离涂层模型, 采用原位电化学测量方法对剥离区的X80钢进行电化学交流阻抗谱(EIS)表征,并对其腐蚀行为进行了研究. 结果表明, 腐蚀初期剥离区各位置的电化学反应特征相同, EIS由高频容抗弧和低频感抗弧组成. 随着腐蚀反应进行,高频容抗弧半径增大, 低频感抗弧消失. 距漏点不同距离的X80钢试样的腐蚀程度有所区别: 漏点处和剥离区底部的腐蚀最严重, 为吸氧腐蚀和阳极溶解所致; 剥离区中部腐蚀较弱, 去除腐蚀产物的X80钢表面出现明显的点蚀坑, 点蚀倾向加重, 腐蚀类型由全面腐蚀向局部腐蚀转变.根据EIS规律和实验结果, 剥离区的腐蚀进程可分为氧耗尽、阴离子迁移和腐蚀扩展3个阶段.

关键词 剥离涂层 腐蚀 原位电化学测试 电化学交流阻抗谱(EIS)    
Abstract

In this work, a rectangular crevice disbanded coating model of buried steel pipeline in Yingtan soil simulated solution was made, and the in situ electrochemical measurement of electrochemical impedance spectroscopy (EIS) was used for characterization of X80 steel under the disbonded coating, at the same time, the corrosion behavior was also investigated. The results showed that the electrochemical characteristics in each position of disbonded area was almost same in the early corrosion time, and the EIS was composed of high–frequency capacitance and low–frequency inductance. After corrosion occurred, the high–frequency capacitance radius increased, and the low–frequency inductance disappeared. The extent of corrosion of X80 steel specimen surface was rather distinct with distance from holiday. The corrosion at holiday and the bottom of disbonded area was most serious because of oxygen corrosion and anodic dissolution. However, in the central, it was weaker. After removing the corrosion product, pits appeared obviously on the specimen surface in the central of disbonded area,indicating that the tendency of pitting occurring increased, and the type of corrosion changed from general corrosion to localized corrosion. According to the EIS and experimental results, the corrosion process under disbanded area could be divided into three steps: oxygen depletion, anion migration and corrosion expansion.

Key wordsdisbonded coating    corrosion    in situ electrochemical test    electrochemical impedance spectroscopy (EIS)
收稿日期: 2012-06-25     
ZTFLH:  TG172.4  
基金资助:

国家自然科学基金项目51131001和50971016, 以及中央高校基本科研业务费专项资金项目FRF-TP-09-029B资助

作者简介: 赵博, 男, 1984年生, 博士生

[1] Chin D T, Sabde G M. Corrosion, 2000; 56: 783

[2] Bervers J A, Thompson N G. Mater Perform, 1997; 36(4): 13

[3] Deflorian F, Rossi S. Electrochim Acta, 2006; 51: 1736

[4] Galvele J R. Corros Sci, 2005; 47: 3053

[5] Fu A Q, Cheng Y F. Corros Sci, 2010; 52: 2511

[6] Puiggali M, Rousserie S, Touzet M. Corrosion, 2002; 58: 961

[7] Song F M, Sridhar N. Corros Sci, 2008; 50: 70

[8] Song Y Q, Du C W, Zhang X, Li X G. Acta Metall Sin, 2009; 45: 1130

(宋义全, 杜翠薇, 张新, 李晓刚. 金属学报, 2009; 45: 1130)

[9] Li Z F, Gan F X, Mao X H. Corros Sci, 2002; 44: 689

[10] Song F M. Corros Sci, 2012; 57: 279

[11] Perdomo J J, Song I. Corros Sci, 2000; 42: 1389

[12] Chen C M, Beck F H, Fontana M G. Corrosion, 1971; 27: 234

[13] Pickering H W. Corros Sci, 1989; 29: 325

[14] Oldfield J W, Sutton W H. Brit Corros J, 1978; 13: 13

[15] Wang R G. Corros Sci, 2008; 50: 325

[16] He X, Dunn D S, Csontos A A. Electrochim Acta, 2007; 52: 7556

[17] Chen X, Li X G, Du C W, Cheng Y F. Corros Sci, 2009; 51: 2242

[18] Han D, Jiang Y M, Shi C, Deng B, Li J. J Mater Sci, 2012; 47: 1018

[19] Song F M. Corros Sci, 2012; 55: 107

[20] Chen X, Li X G, Du C W, Liang P. Acta Metall Sin, 2008; 44: 1431

(陈 旭, 李晓刚, 杜翠薇, 梁平. 金属学报, 2008; 44: 1431)

[21] Fu A Q, Tang X, Cheng Y F. Corros Sci, 2009; 51: 186

[22] Yang M Z, Luo J L, Wilmott M. J Mater Sci Lett, 1998; 17: 1091

[23] Yang M Z, Wilmott M, Luo J L. Thin Solid Films, 1998; 326: 180

[24] Sun J B, Liu W, Yang L Y, Yang J W, Lu M X. Acta Metall Sin, 2008; 44: 991

(孙建波, 柳伟, 杨丽颖, 杨建炜, 路民旭. 金属学报, 2008; 44: 991)

[25] Hegazy M A. Corros Sci, 2009; 51: 2610

[26] Cheng S, Tian J T, Chen S G, Lei Y H, Chang X T, Liu T, Yin Y S. Mater Sci Eng, 2009; 29: 751

[27] Bai Z Q, Chen C F, Lu M X, Li J B. Appl Surf Sci, 2006; 252: 7578

[28] Sawford M K, Ateya B G, Abdullah A M, Pickering H W. J Electrochem Soc, 2002; 149: 198

[29] Al–Zahrani A M, Pickering H W. Electrochim Acta, 2005; 50: 3420

[30] Kennell G F, Evitts R W, Heppner K L. Corros Sci, 2008; 50: 1716

[31] Abdulsalam M I. Corros Sci, 2005; 47: 1336

[32] Gao X L, Zhu M Y, Fu G Q, Wang F, Deng Z Y. Acta Metall Sin, 2011; 47: 520

(高新亮, 朱苗勇, 付贵勤, 汪锋, 邓志银. 金属学报, 2011; 47: 520)

[33] Gan F, Sun Z W, Sabde G. Corrosion, 1994; 50: 804

[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[8] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.