X70 steel,AC corrosion,electrochemistry,stray current,local corrosion,"/> 交流电对X70钢表面形态及电化学行为的影响
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 43-50    DOI: 10.3724/SP.J.1037.2012.00361
  论文 本期目录 | 过刊浏览 |
交流电对X70钢表面形态及电化学行为的影响
杨燕,李自力,文闯
中国石油大学(华东)储运与建筑工程学院, 青岛 266580
EFFECTS OF ALTERNATING CURRENT ON X70 STEEL MORPHOLOGY AND ELECTROCHEMICAL BEHAVIOR
YANG Yan, LI Zili, WEN Chuang
College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580
引用本文:

杨燕,李自力,文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49(1): 43-50.
YANG Yan, LI Zili, WEN Chuang. EFFECTS OF ALTERNATING CURRENT ON X70 STEEL MORPHOLOGY AND ELECTROCHEMICAL BEHAVIOR[J]. Acta Metall Sin, 2013, 49(1): 43-50.

全文: PDF(1329 KB)  
摘要: 

采用动电位极化曲线、电化学阻抗谱(EIS)、浸泡实验等方法研究了交流电流密度(0-100 A/m2)对X70钢电化学行为的影响, 采用OM和SEM观测了X70钢交流腐蚀产物及蚀坑形貌, 探讨了交流电诱发金属腐蚀的机理. 结果表明, 在交流电影响下, X70钢的腐蚀电位向负向偏移, 偏移量和腐蚀速率随着交流电流密度的增大而增大. 低电流密度下, X70钢的EIS特征为容抗弧, 没有出现明显的感抗特征及扩散特征, 在低电流密度下X70钢表面发生了均匀腐蚀. 当交流电流密度增大时, EIS低频区出现Warburg阻抗特征, 表明试样表面的腐蚀过程由扩散控制, 局部腐蚀特征明显. 交流电对金属极化作用产生重要影响, 交流电正、负半周期内的极化效果不对称诱发了金属腐蚀.

关键词 X70钢交流腐蚀电化学杂散电流局部腐蚀    
Abstract

 

Alternating current (AC) corrosion is a significant problem to metal structures in close proximity to alternating current carrying conductors. While for direct current (DC) interference there is large agreement on protection criteria to be used for corrosion mitigation, but the mechanism and relationship between AC density and corrosion rate are still not clear, although some studies have been carried out for many years. In this work, electrochemical methods, including open curves, polarization curves and electrochemical impedance spectra (EIS) on X70 steel samples, were performed in soil-simulating conditions at various AC current densities from 0 to about 100 A/m2. The corrosion behavior and mechanism were discussed based on the electrochemical, XRD, stereo microscope and SEM results. The simulation experiment was set up to predict the effects of AC current density on corrosion potential and corrosion rates. The results indicate that the corrosion potential and corrosion rate increases with the rise of AC current density. When the alternating current goes across the X70 steel, its surface suffers from an obvious corrosion potential accompanied with the bubble crop up. It's because the hydrogen and oxygen reduction reactions happened on the surface of X70 steel. There is only one capacitive reactance arc on EIS at the corrosion potential under a low current density interference. Warburg impedance appears in a higher alternating current density of the low frequency area. It shows that the corrosion process of surface is controlled by diffusion. The amount of AC corrosion can be generally expressed as a percentage of the amount of DC corrosion with the equivalent corrosive effect. Alternating current causes less than 1% of the corrosion caused by the equivalent direct current. The X70 steel is corroded uniformly in the early AC interference, but corrosion pits appear gradually on the surface of X70 steel with the extension of time. Especially in the high current density interference, the pitting is more likely to occur. Furthermore, the higher current density increases pitting tendentiousness and depth. Alternating current has a major impact on metal polarization, and the asymmetry of positive and negative half cycle induces corrosion at alternating current interference. Alternating current could generate an “oscillating” effect in the metal/medium interface.
 
Key wordsX70 steel')" href="#">
收稿日期: 2012-06-18     
基金资助:

中央高校基本科研业务费专项资金项目11CX06077A和中国石油大学(华东)研究生创新工程项目CX--1240资助

 
作者简介: 杨燕, 女, 1982年生, 博士生

 


[1] Buchler M, Schoneich H G, Stalder F.15th Biennial Joint Technical Meeting on Pipeline Research, Orlando, PRCI: 2005: 16

[2] Wakelin R G, Gummov R A, Segall S M. Corrosion 1998, Houston: NACE, 1998: 565

[3] Buchler M, Stalder F, Schoneich H G. Ceocor-2004 International Colloquium, Sector A, Dresden: Ceocor, 2004: 59

[4] Goidanich S, Lazzari L, Ormellese M, Pedeferri M P.16th International Corrosion Congress, Beijing: CSCP, 2005: 16

[5] Linhardt P, Ball G. Corrosion 2006, Houston: NACE, 2006: 160

[6] Li Z L, Yang Y. CIESC J, 2011; 62: 1790

(李自力, 杨燕. 化工学报, 2011; 62: 1790)

[7] Li Z L, Yang Y. Acta Petrol Sin, 2012; 33: 164

(李自力, 杨燕. 石油学报, 2012; 33: 164)

[8] Du C Y, Cao B, Wu Y S. Corros Prot, 2009; 30: 655

(杜晨阳, 曹备, 吴荫顺. 腐蚀与防护, 2009; 30: 655)

[9] Wu Y S, Cao B. Cathodic and Anodic Protection-Principles, Techniques and Engineering Applications.

Beijing: China Petrochemical Press, 2007: 212

(吴荫顺, 曹备. 阴极保护和阳极保护—原理、技术及工程应用. 北京: 中国石化出版社, 2007: 212)

[10] Biase L D, Fumei O, Cigna R. Corrosion 2010, Houston: NACE, 2010: 108

[11] Goidanich S, Lazzari L, Ormellese M. Corros Sci, 2009; 52: 916

[12] Fu A Q, Cheng Y F. Corros Sci, 2010; 52: 612

[13] Jiang Z T, Du Y X, Dong L, Lu M X. Acta Metall Sin, 2011; 47: 997

(姜子涛, 杜艳霞, 董亮, 路民旭. 金属学报, 2011; 47: 997)

[14] Weng Y J, Wang N. J Chin Soc Corrro Prot, 2011; 31: 270

(翁永基, 王宁. 中国腐蚀与防护学报, 2011; 31: 270)

[15] Xu L Y, Su X, Yin Z X, Tang Y H, Cheng Y F. Corros Sci, 2012; 61: 215

[16] Gellings P J. Electrochim Acta, 1962; 7: 19

[17] Xiao H, Lalvani S B. J Electrochem Soc, 2008; 155: C69

[18] Zhang R, Vairavanathan P R, Lalvani S B. Corros Sci, 2008; 50: 1664

[19] Li M C, Cheng Y F. Electrochim Acta, 2007; 52: 8111

[20] Gu B, Luo J, Mao X. Corrosion 1990, Houston: NACE, 1990: 96

[21] Zhao W M, Wang Y. Acta Metall Sin, 2008; 44: 1125

(赵为民, 王勇. 金属学报, 2008; 44: 1125)

[22] Cao C N. Introduction of Electrochemical Impedence Spectra. Beijing: Science Press, 2002: 76

(曹楚南. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 76)

[23] Liu Z Y, Dong C F, Jia Z J, Li X G. Acta Metall Sin, 2011; 47: 1009

(刘志勇, 董超芳, 贾志军, 李晓刚. 金属学报, 2011; 47: 1009)

[24] Li D G, Zhu J W, Zheng M S, Feng Y R, Bai Z Q. Acta Metall Sin, 2008; 44: 739

(李党国, 朱杰武, 郑茂盛, 冯耀荣, 白真权. 金属学报, 2008; 44: 739)

[25] Nielsen L V, Nielsen K V, Baumgarten B. Corrosion 2004, Houston: NACE, 2005: 211

[26] Nielsen L V. Corrosion 2005, Houston: NACE, 2005: 188
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[7] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[8] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[9] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[10] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[11] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[12] 杨玉林, 穆张岩, 范铮, 淡振华, 王莹, 常辉. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能[J]. 金属学报, 2019, 55(10): 1302-1310.
[13] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[14] 屈少鹏, 程柏璋, 董丽华, 尹衍升, 杨丽景. 2205钢在模拟深海热液区中的腐蚀行为[J]. 金属学报, 2018, 54(8): 1094-1104.
[15] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.