Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1422-1430    DOI: 10.3724/SP.J.1037.2012.00291
  论文 本期目录 | 过刊浏览 | 高级检索 |
等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能
杨沐鑫1,2,杨钢2,刘正东2,杜习乾2,黄崇湘3
1. 昆明理工大学材料科学与工程学院, 昆明 650093\par
2. 钢铁研究总院结构材料研究所, 北京 100081\par
3. 四川大学建筑与环境学院, 成都 610065
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 0Cr13 FERRITIC STAINLESS STEEL PROCESSED BY EQUAL–CHANNEL ANGULAR PRESSING AND SUBSEQUENT ANNEALING TREATMENT
YANG Muxin 1,2, YANG Gang 2, LIU Zhengdong 2, Du Xiqian 2, HUANG Chongxiang 3
1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2. Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
3. College of Architecture and Environment, Sichuan University, Chengdu 610065
全文: PDF(2454 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

研究了固溶态0Cr13铁素体不锈钢经室温2道次等径转角挤压(ECAP)及退火处理后的微观结构和力学性能.光学显微镜和透射电镜观察表明, 经ECAP挤压变形和650--750 ℃退火后, 样品发生部分再结晶, 内部残留约10%-35%(体积分数)均匀分布的岛状超细晶基体. 统计表明, 再结晶晶粒和超细晶晶粒尺寸呈双峰分布, 平均晶粒尺寸分别为5.1---8.3 μm和418---525 nm. 拉伸和冲击测试结果表明, 优选的ECAP挤压变形+700℃退火处理工艺, 能够使实验钢获得与常规使用态(锻后700℃退火)相当的冲击韧性(212 J/cm2),以及比后者更高的屈服强度、均匀塑性和静力韧度(分别提高10%, 35%和70%). 组织细化和应变硬化能力的提高是造成挤压后退火样品综合力学性能提高的原因.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘
关键词 0Cr13铁素体不锈钢 等径转角挤压(ECAP) 微观结构 拉伸性能 冲击韧性    
Abstract

In comparison with austenitic stainless steel, the ferritic stainless steel has obvious advantage in price due to its lower nickel content. However, the relatively poor ductility and toughness limit its applications. To overcome these shortcomings, a new thermo–mechanical approach, involving processing by severe plastic deformation and proper annealing treatment to introduce a bimodal grain size distribution, was adopted for achieving high work–hardening capability, superior strength–ductility combination and good impact toughness in metallic materials. In this work, the combined effects of severe plastic deformation and partially recrystallization on the microstructures and mechanical properties of a ferritic stainless steel were investigated and compared with the traditional forging and annealing process. An solution–treated ferritic stainless steel (0Cr13, AISI 405) was subjected to equal–channel angular pressing (ECAP, an important kind of severe plastic deformation) for two passes at room temperature and subsequent annealing treatments. Optical microscope (OM) and transmission electron microscopy (TEM) observations showed that ultrafine-grained (UFG) structure was obtained in the ECAP–processed sample. After subsequent annealing at 650—750 ℃ for 1 h, partial recrystallization occurred and the remaining island–like UFG grains (10%—35% volume fraction) distributed uniformly. Statistical measurements indicated that the microstructures of the annealed ECAP samples exhibited a bimodal grain size distribution including relatively coarse recrystallized grains (CRGs) and remaining ultrafine grains (UFGs). The average grain size for CRGs determined from OM observations was 5.1—8.3 μm and the average grain size for UFGs measured from TEM observations was 418—525 nm. By contrast, the annealed forged sample (700℃) exhibited a unimodal grain size distribution with average grain size of about 74 μm. Tensile and impact tests showed that the strength of 0Cr13 ferritic stainless steel could be improved greatly through grain refinement by ECAP process, and the strength–ductility combination could be modulated via sacrificing some strength for ductility by subsequent annealing treatment. In comparison with the conventional sample (forging+annealing at 700 ℃), the tested steel processed by the optimal processing involving ECAP deformation and annealing treatment at 700℃ showed higher yield strength, uniform ductility and static toughness (enhanced by 10%, 35% and 70% respectively), simultaneously a comparable impact toughness (212 J/cm2). The refined microstructure and higher work–hardening capacity were responsible for the improved mechanical properties of the annealed ECAP samples and the strengthening mechanisms were discussed based on the experimental results.

Key words0Cr13 ferritic stainless steel    equal–channel angular pressing (ECAP)    microstructure    tensile properties    impact toughness
收稿日期: 2012-05-22      出版日期: 2012-12-11
ZTFLH:  TG142.1  
  TG156.21  
基金资助:

国家自然科学基金项目50971045,11172187和中央高校基本科研业务费0212SCU04A05资助

通讯作者: 杨钢     E-mail: yanggang@nercast.com,
作者简介: 杨沐鑫, 男, 1982年生, 博士生
引用本文:   
杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘. 等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能[J]. 金属学报, 2012, 48(12): 1422-1430.
YANG Muxin YANG Gang LIU Zhengdong Du Xiqian HUANG Chongxiang. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 0Cr13 FERRITIC STAINLESS STEEL PROCESSED BY EQUAL–CHANNEL ANGULAR PRESSING AND SUBSEQUENT ANNEALING TREATMENT. Acta Metall Sin, 2012, 48(12): 1422-1430.
链接本文:  
http://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00291      或      http://www.ams.org.cn/CN/Y2012/V48/I12/1422
[1] Fujita T. Translated by Ding W H, Zhang X J, Chen Y Z. Heat Treatment of Stainless Steels. Beijing: China Machine Press, 1983: 106(藤田辉夫著, 丁文华, 张绪江, 陈玉璋译. 不锈钢的热处理. 北京: 机械工业出版社, 1983: 106)
[2] Lu S Y, Zhang T K, Kang X F, Yang C Q, Wang X. Stainless Steel. Beijing: Atomic Energy Press, 1995: 77(陆世英, 张廷凯, 康喜范, 杨长强, 王 熙. 不锈钢. 北京: 原子能出版社, 1995: 77)
[3] Wen Y Q. Ultra-Fine Grained Steels-Microstructural Refinement Theory and Controlled Technology of Steels. Beijing: Metallurgical Industry Press, 2003: 7(翁宇庆. 超细晶钢-钢的组织细化理论与控制技术. 北京: 冶金工业出版社, 2003: 7)
[4] Song R, Ponge D, Raabe D, Speer J G, Matlock D K. Mater Sci Eng, 2006; A441: 1
[5] Wen D C. Mater Trans, 2006; 47: 2779
[6] Song R, Ponge D, Raabe D. Acta Mater, 2005; 53: 4881
[7] Calcagnotto M, Ponge D, Raabe D. Mater Sci Eng, 2010; A527: 7832
[8] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[9] Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257(吴世丁, 安祥海, 韩卫忠, 屈伸, 张哲峰. 金属学报, 2010; 46: 257)
[10] Yang G, Yang M X, Liu Z D, Wang C. J Iron Steel Res Inter, 2011; 18: 40
[11] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[12] Wang Y M, Chen M W, Zhou F H, Ma E. Nature, 2002; 419: 912
[13] Wang Y M, Ma E, Chen M W. Appl Phys Lett, 2001; 80:2395
[14] Ma E. JOM, 2006; 58: 49
[15] Yang G, Huang C X, Wang C, Zhang L Y, Hu C, Zhang Z F, Wu S D. Mater Sci Eng, 2009; A515: 199
[16] Wang J T, Xu C, Du Z Z, Qu G Z, Langdon T G. Mater Sci Eng, 2005; A410: 312
[17] Yang M X, Yang G, Liu Z D, Wang C, Hu C, Huang C X. Acta Metall Sin, 2012; 48: 164(杨沐鑫, 杨钢, 刘正东, 王昌, 胡超, 黄崇湘. 金属学报, 2012; 48: 164)
[18] JIS G. Cold-Rolled Stainless Steel Plate and Steel Belt Technical Standards. Tokyo: JSA, 2005: 20
[19] Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949
[20] William D, Callister Jr. Fundamentals of Materials Science and Engineering. 5th ed. New York: John Wiley &Sons Inc, 2001:185
[21] Fang D R, Duan Q Q, Huang C X, Wu S D, Zhang Z F, Li J J, Zhao N Q. Acta Metall Sin, 2007; 43: 1251(房大然, 段启强, 黄崇湘, 吴世丁, 张哲峰, 李家俊, 赵乃勤. 金属学报, 2007; 43: 1251)
[22] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655
[23] ASTM E 112-96. Standard Test Methods for Determining Average Grain Size. West Conshohocken: ASTM International, 2004: 10
[24] Huang C X, Yang G, Gao Y L, Wu S D, Zhang Z F. Mater Sci Eng, 2008; A485: 643
[25] Huang C X, Yang G, Wang C, Zhang Z F, Wu S D. Metall Mater Trans, 2011; 42 A: 2061
[26] Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492
[1] 张志明,王俭秋,韩恩厚,柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[2] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[3] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[4] 李振江, 肖纳敏, 李殿中, 张俊勇, 罗永建, 张瑞雪. G18CrMo2-6钢回火组织及冲击韧性研究*[J]. 金属学报, 2014, 50(7): 777-786.
[5] 温涛, 胡小锋, 宋元元, 闫德胜, 戎利建. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响*[J]. 金属学报, 2014, 50(4): 447-453.
[6] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[7] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[8] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[9] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.
[10] 刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
[11] 肖旋,赵海强,王常帅,郭永安,郭建亭,周兰章. B和P对GH984合金组织和力学性能的影响[J]. 金属学报, 2013, 29(4): 421-427.
[12] 李冬杰, 陆善平, 李殿中, 李依依. 高氮钢焊缝的组织和冲击性能研究[J]. 金属学报, 2013, 49(2): 129-136.
[13] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
[14] 周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 2013, 49(11): 1467-1472.
[15] 王震,曹,磊,刘仁慈,刘冬,崔玉友,杨,锐. 冷却速率对Ti3Al合金组织和拉伸性能的影响[J]. 金属学报, 2013, 49(11): 1487-1492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed