Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1409-1414    DOI: 10.3724/SP.J.1037.2012.00286
  论文 本期目录 | 过刊浏览 |
深过冷铁钴基块体合金的细晶化研究
穆丹宁,杨长林,魏晓伟,刘峰
西北工业大学凝固技术国家重点实验室, 西安 710072
RESEARCH ON GRAIN REFINEMENT IN BULK UNDERCOOLED Fe–Co BASE ALLOYS
MU Danning, YANG Changlin, WEI Xiaowei, LIU Feng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
引用本文:

穆丹宁 杨长林 魏晓伟 刘峰. 深过冷铁钴基块体合金的细晶化研究[J]. 金属学报, 2012, 48(12): 1409-1414.
MU Danning YANG Changlin WEI Xiaowei LIU Feng. RESEARCH ON GRAIN REFINEMENT IN BULK UNDERCOOLED Fe–Co BASE ALLOYS[J]. Acta Metall Sin, 2012, 48(12): 1409-1414.

全文: PDF(1901 KB)  
摘要: 

采用熔融玻璃净化与循环过热相结合的深过冷技术, 对比研究了深过冷凝固和过冷熔体Cu模激冷凝固Fe44Co44Nb7 B4Cu1块体合金的组织特征. 结果表明, 随过冷度增大,深过冷和深过冷Cu模激冷凝固组织均由最初的发达树枝晶逐渐演变为细小的粒状晶,并且Cu模激冷可显著减小树枝晶向粒状晶转变的临界过冷度. 在相同过冷度下,过冷熔体Cu模激冷凝固组织更加细小均匀, 其根本原因在于Cu模激冷和熔体深过冷的双重作用不仅提高了熔体的形核率并抑制了晶粒长大, 而合金化元素在晶界聚集并不是阻碍晶粒长大的主要原因.

关键词 铁钴基块体合金 深过冷 Cu模吸铸 凝固组织 晶粒细化    
Abstract

Fe–Co base alloys, owing to their excellent high tempreture soft magnetic property, have been given more and more attention. Especially, Fe–Co base bulk amorphous–nanocrystalline materials have became an important development direction, while the preparation techniques have limited the wide applications of these high performance magnetic materials. Undercooling rapid solidification technique, independent of the sample size, has unique advantages in preparing bulk microcrystalline and nanocrystalline materials. However, upon large volume of alloy melt, more heterogeneous nucleus and latent heat of crystallization will occurr, which is disadvantageous to obtain a high undercooling and to repress grain growth in the process of solidification. Obviously, regular rapid solidification technique has not met the requirements for the preparation of industrial products with a large volume. So it is important and necessary to combine other rapid solidification techniques with regular rapid solidification technique to achieve high undercooling. In present work, copper mould chilling was used for undercooled Fe–Co base alloy melts. On one hand, the latent heat of crystallization can be transmitted to outside more rapidly by copper mould, on the other hand, by increasing the cooling rate, copper mould can also make undercooled melt achieve further undercooling. In this work, applying fluxing purification and cycling superheating method, Fe44Co44Nb7B4Cu1 melts were undercooled, and microstructure evolutions of the two different kinds of Fe44Co44Nb7B4Cu1 alloy samples prepared by undercooling solidification and copper mould chilling were studied, respectively. Using SEM and EDS, the grain refinement mechanism was investigated systematically. The experimental results show that the dendrite structures chang into granular grains in both the two kinds of samples with the increase of undercooling. The critical undercooling of dendrite structures changing into granular grains is smaller in the samples prepared by copper mould chilling than that by undercooling solidification. And the smaller grains and more homogenous microstructures are found in the samples prepared by copper mould chilling under the same undercooling. In combination with the calculations and the analysis of experiment results, it indicates that the decrease of the grain size is mainly attributed to the melt supercooling, remelting and copper mold chilling which increases nucleation rate and inhibits the grain growth. While alloying element gathering at the grain boundary is not the main factor.

Key wordsFe–Co base bulk alloy    undercooling    copper mould chilling    solidification microstructure    grain refinement
收稿日期: 2012-05-17     
基金资助:

国家自然科学基金项目50901059, 国家杰出青年科学基金项目51125002和凝固技术国家重点实验室自主研究课题项目41-QP-2009及60--TP--2010资助

作者简介: 穆丹宁, 女, 1985年生, 硕士生

[1] Herlach D M. Mater Sci Eng, 1994; R12: 177

[2] Herlach D M, Eckler K, Karma A, Schwarz M. Mater Sci Eng, 2001; A304–306: 20

[3] Liu N, Liu F, Yang G C, Chen Y Z, Yang C L, Li J S,Zhou Y H. J Alloys Compd, 2008; 455: L6

[4] Liu N, Yang G C, Chen Y Z, Zhou Y H. Prog Nat Sci,2006; 16: 120

(刘宁, 杨根仓, 陈豫增, 周尧和. 自然科学进展, 2006; 16: 120)

[5] Han Y, Yang C L, Liu F, Sang G L, Jiang Y H. Foundry Technol, 2011; 32: 453

(韩 野, 杨长林, 刘 峰, 桑国良, 姜伊辉. 铸造技术, 2011; 32: 453)

[6] Hayzelden C, Rayment J J, Cantor B. Acta Metall, 1983;31: 379

[7] Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing. 4th Ed., Baton Rouge La: Claitor’s Publishing Division, 1988: 13

[8] Liu N, Yang G C, Liu F, Chen Y Z, Yang C L, Zhou Y H. Acta Metall Sin, 2007; 43: 449

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林, 周尧和. 金属学报, 2007; 43: 449)

[9] Liu N, Liu F, Yang G C, Chen Y Z, Chen D, Yang C L, Zhou Y H. Physica, 2007; 387B: 151

[10] Hermann R, Loser W. J Magn Magn Mater, 2002; 242–245: 285

[11] Liu N, Yang G C, Liu F, Yang C L. Chin J Mater Res,2010; 24: 525

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林. 材料研究学报, 2010; 24: 525)

[12] Li M J, Xue Y F, Song G S, Yang G C, Zhou Y H. Acta Metall Sin, 1999; 35: 517

(李明军, 薛玉芳, 宋广生, 杨根仓, 周尧和. 金属学报, 1999; 35: 517)

[13] Hayzelden C, Rayment J J, Cantor B. Acta Metall, 1983;31: 379

[14] Aziz M J. J Appl Phys, 1982; 53: 1158

[15] Burke J E. Trans Met Soc AIME, 1949; 175: 73

[16] Michels A, Krill C E, Ehrhrdt H, Birringer R, Wu D T. Acta Mater, 1999; 47: 2143

[17] Li J J, Wang J C, Yang G C. Scr Mater, 2009; 60: 945

[18] Zhu M, Wu Z F, Zeng M Q, Ouyang L Z, Gao Y. J Mater Sci, 2008; 43: 3259

[19] Natter H, Schmelzer M, Lo1ffler M S, Krill C E, Fitch A, Hempelmann R. J Phys Chem, 2000; 104B: 2467

[20] Jackson K A, Hunt J D, Uhlmann D R, Stewart T P. TMS–AIME, 1966; 236: 149

[21] Karma A. Int J Non–Equilib Process, 1998; 11: 201

[22] Liu F, Yang G C. J Cryst Growth, 2001; 231: 295

[23] Liu F, Guo X F, Yang G C. Chin J Mater Res, 2001; 15:269

 (刘峰, 郭学锋, 杨根仓. 材料研究学报, 2001; 15: 269)

[24] Piccone T J, Wu Y, Shiohara Y, Flemings M C. Mater Trans, 1987; 18A: 925

[25] Li M J, Lin X, Song G S, Yang C L, Zhou Y H. Mater Sci Eng, 1999; A268: 90

[26] Li M J. PhD Thesis, Northwestern Polytechnical University, Xi’an, 1999

(李明军. 西北工业大学博士学位论文, 西安, 1999)

[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[4] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[5] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[7] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[8] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[9] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[10] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[11] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[12] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[14] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[15] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.