Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1215-1222    DOI: 10.3724/SP.J.1037.2012.00265
  论文 本期目录 | 过刊浏览 |
变形合金的亚晶组织演化的相场模型
高英俊1,2,3,罗志荣1,2,黄礼琳1,2,胡项英2
1. 广西大学教育部工程防灾与结构安全重点实验室, 南宁 530004
2. 广西大学物理科学与工程技术学院, 南宁 530004
3. 中国科学院国际材料物理中心, 沈阳 110016
PHASE FIELD MODEL FOR MICROSTRUCTURE EVOLUTION OF SUBGRAIN IN DEFORMATION ALLOY
GAO Yingjun 1,2,3, LUO Zhirong 1,2, HUANG Lilin 1,2, HU Xiangying 2
1. Key Lab of Engineering Disaster Prevention and Structural Safety of China Ministry of Education, Guangxi University, Nanning 530004
2. College of Physics Science and Engineering, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Science, Shenyang 110016
引用本文:

高英俊 罗志荣 黄礼琳 胡项英. 变形合金的亚晶组织演化的相场模型[J]. 金属学报, 2012, 48(10): 1215-1222.
GAO Yingjun LUO Zhirong HUANG Lilin HU Xiangying. PHASE FIELD MODEL FOR MICROSTRUCTURE EVOLUTION OF SUBGRAIN IN DEFORMATION ALLOY[J]. Acta Metall Sin, 2012, 48(10): 1215-1222.

全文: PDF(3608 KB)  
摘要: 

将多态相场 (MSPF) 模型与晶格畸变模型结合, 根据合金的储存能分布,应用于亚晶组织的演化研究. 通过构造变形晶粒的初始亚晶组织,计算模拟再结晶过程中亚晶通过合并与吞噬机制进行长大的微观演化过程,系统研究了变形量对亚晶尺寸分布和亚晶长大速率的影响. 结果表明,在储存能较高的区域(如晶界附近处), 亚晶较细小, 分布较密集;再结晶过程中, 亚晶密度高的区域最先出现亚晶合并和吞噬现象,并通过该机制使再结晶晶粒形核和长大; 而在变形晶粒内部,亚晶分布较均匀且数量密度低, 尺寸较大, 亚晶合并长大的速率较慢.再结晶晶粒尺寸权重概率分布表明, 变形量大的合金, 晶粒尺寸较快地变大,完成再结晶的时间较短, 而变形量较小的合金, 晶粒尺寸变化较慢,再结晶完成的时间较长. 亚晶组织演化的模拟结果与实验结果相符.

关键词 相场模型 亚晶 塑性变形 镁合金    
Abstract

It is well know that static recrystallization (SRX), which occurs during post–deformation annealing, is greatly affected by the deformation formed during cold working. Therefore, to investigate and predict the SRX microstructure and SRX texture numerically with high accuracy, it is necessary to simulate the SRX process taking the deformation microstructure into consideration. A model that couples the crystal plasticity finite element method and microstructure evolution model is believed to be the most promising approach for SRX microstructure design. In this paper, the subgrain structure evolution is firstly studied by using the multi–state phase field (MSPF) model coupling with the lattice deformation model including the stored energy distribution of deformed alloy. The initial subgrain growth through the mechanism of mergence and swallow during recrystallization process are simulated by MSPF. The different amount of deformation effecting on subgrain distribution and subgrain growth rate are studied systematically. The calculated results show that in the region with higher stored energy, for example, around grain boundaries, there are very dense finer subgrains which recrystallize earliestly in the higher stored energy region during recrystallization process, and grow up by mergencing and swallowing, while the distribution of subgrains inside the deformation grain is relative uniform and with relative large subgrains which grow up slowly. The distribution of grains obtained by the weighted frequency shows that the grain distribution changes from small to large grain is fast for the larger deformed alloy, while the change is slow for the less deformed alloy. All the results are agreement with experimental ones.

Key wordsphase field model    subgrain    plastic deformation    Mg--based alloy
收稿日期: 2012-05-10     
ZTFLH:  TG115  
基金资助:

国家自然科学基金项目51161003和50661001, 广西自然科学基金重点项目2012GXNSFDA053001及广西研究生创新计划项目105931001015资助

作者简介: 高英俊, 男, 1962年生, 教授

[1] Yang X Y, Zhu Y K, Zhang L. Chin J Mater Res, 2010; 24: 169

(杨续跃, 朱亚坤, 张 雷. 材料研究学报, 2010; 24: 169)

[2] Yang X Y, Jiang Y P. Acta Metall Sin, 2010; 46: 451

(杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[3] Humphreys F J, HatherlyM. Recrystallization and Related Annealing Phenomena. Oxford: Elsevier Science, 1995: 1

[4] Wu X X, Yang X Y, Zhang L, Zhang Z L. Acta Metall Sin, 2011; 47: 140

(吴新星, 杨续跃, 张雷, 张之岭. 金属学报, 2011; 47: 140)

[5] Kim K H, Suh B C, Bac J H. Scr Mater, 2010; 63: 716

[6] Chun Y B, Hwang S K. Acta Mater, 2008; 56: 369

[7] Huang M X, Pedro E J, Castillo R D, Bouaziz O, Zwaag S. Acta Mater, 2009; 57: 3431

[8] Baudin T, Julliard F, Paillard P, Penelle R. Scr Mater, 2000; 43: 63

[9] Choi S H, Cho J H. Mater Sci Eng, 2005; A405: 86

[10] Sepehrband P, Esmaeli S. Scr Mater, 2010; 63: 4

[11] Zheng C W, Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Metall Sin, 2006; 42: 474

(郑成武, 兰勇军, 肖纳敏, 李殿中, 李依依. 金属学报, 2006; 42: 474)

[12] Raabe D, Hautchrli L. Comput Mater Sci, 2005; 34: 299

[13] Raabe D. Annu Rev Mater Res, 2002; 32: 53

[14] Radhakrishnan B, Sarma G. Philos Mag, 2004; 84: 2341

[15] Takaki T, Yamanaka A, Higa Y, Tomita Y. Mater Trans, 2008; 49: 2559

[16] Gao Y J, Luo Z R, Hu X Y, Huang C G. Acta Metall Sin, 2010; 46: 1161

(高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)

[17] Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 320

[18] Fan D, Chen L Q. Acta Mater, 1997; 45: 3297

[19] Wang M T, Zong B Y, Wang G. Comput Mater Sci, 2009; 45: 217

[20] Gao Y J, Luo Z R, Zhang S Y, Huang C G. Acta Metall Sin, 2010; 46: 1473

(高英俊, 罗志荣, 张少义, 黄创高. 金属学报, 2010; 46: 1473)

[21] Zhao P. Fundamental Course of Materials Science. Harbin: Harbin Institute of Technology Press, 1998: 148

(赵品. 材料科学基础教程. 哈尔滨: 哈尔滨工业大学出版社, 1998: 148)

[22] Oono Y, Pori S. Phys Rev Lett, 1987; 58: 836

[23] Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y. Acta Mater, 2008; 56: 821

[24] Pennock G M, Drury M R, Spiers C J. J Struct Geology, 2005; 27: 2159

[25] Xu S W. Master Thesis, Harbin Institute of Technology, 2006

(徐世伟. 哈尔滨工业大学硕士学位论文, 2006)

[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[6] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[14] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[15] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.