NiTi shape memory alloy,autocatalytic effect,stress field,concentration field,
phase field method
,"/> NiTi形状记忆合金中Ni<sub>4</sub>Ti<sub>3</sub>共格沉淀相自催化生长效应的相场模拟
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 115-122    DOI: 10.3724/SP.J.1037.2012.00264
  论文 本期目录 | 过刊浏览 |
NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟
柯常波1, 2,曹姗姗2,马骁2,黄平1,张新平2
1. 华南理工大学机械与汽车工程学院, 广州 510640
2. 华南理工大学材料与科学工程学院, 广州 510640
PHASE FIELD SIMULATION OF AUTO-CATALYTIC GROWTH EFFECT OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY
KE Changbo 1,2, CAO Shanshan2, MA Xiao2, HUANG Ping1, ZHANG Xinping2
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

柯常波,曹姗姗,马骁,黄平,张新平. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟[J]. 金属学报, 2013, 49(1): 115-122.
KE Changbo, CAO Shanshan, MA Xiao, HUANG Ping, ZHANG Xinping. PHASE FIELD SIMULATION OF AUTO-CATALYTIC GROWTH EFFECT OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. Acta Metall Sin, 2013, 49(1): 115-122.

全文: PDF(896 KB)  
摘要: 

利用相场模型研究了Ni4Ti3沉淀相自催化效应的产生机制, 基于体系各种能量的变化规律研究了自催化生长效应中合理的Ni4Ti3变体群的排列方式. 模拟研究结果表明, 在模拟最初的时间内, 为缓解球形Ni4Ti3相与NiTi基体相形态上的不匹配, 体系的化学自由能逐渐增大, 弹性能和界面能逐渐减小; 当Ni4Ti3相与NiTi基体相达到最佳匹配后, 相变过程中化学自由能逐渐减小, 弹性能和界面能逐渐增大; 整个相变过程中体系向低能量态发展. 同取向变体的梯形排列模式具有最大的优先性, 其次是同取向变体的水平排列方式, 再次是不同取向变体的边--面排列方式, 最不具优先性的是同种变体的垂直排列模式. 相场模拟结果深化并拓展了已有实验结论.

关键词 NiTi形状记忆合金自催化效应应力场浓度场相场法    
Abstract

The precipitation behavior and distribution of Ni4Ti3 particles in NiTi alloys have a significant influence on the subsequent martensitic transformation, which may consequently affect shape memory effect and superelasticity of NiTi alloys. The latest experimental studies confirmed that in single crystal NiTi alloy, the Ni4Ti3 particles nucleate and grow as an autocatalytic way leading to a step--like configuration. The autocatalytic nucleation known as collective manner has been widely studied in martensitic transformation while causing relatively less attention in diffusion transformation such as precipitation. Previous studies have been launched to investigate the nucleation and orientation issues of Ni4Ti3 precipitate mainly by analyzing the stress or  concentration field around the Ni4Ti3 particle. However, the coupling between stress and concentration field is necessary in Ni4Ti3 precipitation due to its diffusion nature, also the coupling and cross influence of each energyin the simulation system should be taken into account. In thispaper, the mechanism of autocatalytic effect of Ni4Ti3 precipitate has been studied by means of phase field method,the favorable Ni4Ti3 precipitates array has been investigated through thevariation of each energy in the simulation system. The simulation results show that in the initial short time of Ni4Ti3 precipitation, due to the morphological accommodation of Ni4Ti3 and NiTi phases, the system chemical free energy gradually increases, while the elastic and interfacial energy decrease; after the self-accommodation stage, each energy shows the inverse trend compared with the initial stage; in the whole phase transformation process, the system total energy develops toward the lower energy state. In all of the feasible precipitate arrays, it is found that the step-like array formed by same orientation Ni4Ti3 variants has the supreme priority, secondly the horizontal array followed by the edge-face array formed by different orientation variants, the vertical array constituted by same orientation variants was confirmed as the least possible way, these simulation results have deepened and expanded the understanding obtained in previous experiment studies.

 
Key wordsNiTi shape memory alloy')" href="#">')" href="#">
phase field method
收稿日期: 2012-05-10     
基金资助:

 

国家自然科学基金项目50871039, 广东省自然科学基金项目10151064101000017, 中国博士后科学基金项目20110490881和中央高校基本科研业务费专项资金项目2012ZZ0014资助
作者简介: 柯常波, 男, 1981年生, 助理研究员, 博士

 


[1] Otsuka K, Ren X. Prog Mater Sci, 2005; 50: 511

[2] Michutta J, Carroll M C, Yawny A, Somsen C, Neuking K, Eggeler G. Mater Sci Eng, 2004; A378: 152

[3] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525

[4] Allafi J K, Dlouby A, Eggeler G. Acta Mater, 2002; 50: 4255

[5] Cao S, Ke C B, Zhang X P, Schryvers D. J Alloys Compd, 2012; doi: 10.1016/j.bbr.2011.03.031

[6] Bhadeshia H K D H. J Mater Sci, 1982; 17: 383

[7] Olson G B, Cohen M. Metall Trans, 1975; 6A: 791

[8] Perovic V, Purdy G R. Acta Metall, 1981; 29: 889

[9] Fan G, Chen W, Yang S, Zhu J, Ren X, Otsuka K. Acta Mater, 2004; 52: 4351

[10] Tirry W, Schryvers D. Acta Mater, 2005; 53: 1041

[11] Schryvers D, Tirry W, Yang Z Q. Mater Sci Eng, 2006; A438--440: 485

[12] Guo W, Steinbach I, Somsen C, Eggeler G. Acta Mater, 2011; 59: 3287

[13] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46: 84

(柯常波, 马骁, 张新平. 金属学报, 2010; 46: 81)

[14] Ke C B, Ma Xiao, Zhang X P. Acta Metall Sin, 2010; 46: 921

(柯常波, 马骁, 张新平. 金属学报, 2010; 46: 921)

[15] Li D Y, Chen L Q. Acta Mater, 1998; 46: 639

[16] Khachaturyan A G. Theory of Structural Transformation in Solids. New York: Wiley--Interscience, 1983: 213

[17] Wang Y, Khachaturyan A G. Mater Sci Eng, 2006; A438--440: 55

[18] Wagner M F, Windl W. Acta Mater, 2008; 56: 6232

[19] Wagner M F, Windl W. Scr Mater, 2009; 60: 207

[20] Zhou N, Shen C, Wagner M F, Eggeler G, Mills M J, Wang Y. Acta Mater, 2010; 58: 6685

[21] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009; 57: 316

[22] Sharma S K, Macht M P, Naundorf V. Phys Rev, 1994; 49B: 6655

[23] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023

 
[1] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[2] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[3] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[5] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[6] 张军,陈文雄,郑成武,李殿中. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53(6): 760-768.
[7] 张军,郑成武,李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程*[J]. 金属学报, 2016, 52(11): 1449-1458.
[8] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[9] 周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
[10] 江鸿杰 柯常波 曹姗姗 马骁 张新平. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J]. 金属学报, 2011, 47(9): 1105-1111.
[11] 柯常波 马骁 张新平. 孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J]. 金属学报, 2011, 47(2): 129-139.
[12] 柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.
[13] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
[14] 苗树芳 陈铮 王永欣 徐聪 马锐 张明义. L10相和L12相结构原位转变的微观相场法模拟[J]. 金属学报, 2009, 45(5): 630-634.
[15] 姜海昌; 戎利建 . 多孔 NiTi形状记忆合金中 Ni的释放行为[J]. 金属学报, 2008, 44(2): 198-202 .