Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1260-1266    DOI: 10.3724/SP.J.1037.2012.00258
  论文 本期目录 | 过刊浏览 |
带锈碳钢在流动海水中的长期腐蚀行为
彭欣1,王佳1,2,山川1,王海杰1,刘在健1,邹妍3
1. 中国海洋大学化学化工学院, 青岛 266100
2. 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
3. 山东省科学院海洋仪器仪表研究所, 青岛 266100
CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER
PENG Xin 1, WANG Jia 1,2, SHAN Chuan 1, WANG Haijie 1, LIU Zaijian 1, ZOU Yan 3
1.The College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
2. State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016
3. Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266100
引用本文:

彭欣 王佳 山川 王海杰 刘在健 邹妍. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48(10): 1260-1266.
PENG Xin WANG Jia SHAN Chuan WANG Haijie LIU Zaijian ZOU Yan. CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER[J]. Acta Metall Sin, 2012, 48(10): 1260-1266.

全文: PDF(1020 KB)  
摘要: 

将Q235碳钢在流动海水中浸泡280 d, 利用失重法和多种腐蚀电化学方法研究了其在浸泡过程中的腐蚀规律. 结果表明, 与静止海水浸泡相比, 在流动体系长时间浸泡后, 电极表面几乎不存在疏松的黄色锈层, 而被一层致密的黑色腐蚀产物所覆盖;失重法测得的腐蚀速率随腐蚀时间延长呈现减小的趋势, 并最终趋于稳定,与静止海水相比, 流动海水中的腐蚀速率高出约1倍; 电化学方法测得的腐蚀速率则随浸泡时间的延长而增大, 与失重法的结果之间存在较为明显的偏差,并且浸泡时间越长, 这一偏差越明显. 长期浸泡后, 碳钢表面的锈层对电化学测试结果产生影响, 是导致电化学方法不能准确评估腐蚀速率的原因.

关键词 碳钢 流动海水 锈层 腐蚀速率 偏差    
Abstract

The rust/metal structure is one of the multiphase and multiple interface complex systems. The corrosion under rust is the uppermost and longest form of metallic corrosion evolution process. It is difficult to accurately determine the electrochemical parameters because the existence of rust complicates the electrochemical corrosion process. Based on the result of the previous studies of quiescent seawater, the weight–loss method and different electrochemical tests such as polarization curves (PC), electrochemical impedance spectra (EIS) and linear polarization resistance (LPR) were carried out to study the corrosion behavior of A3 carbon steel immersed in flowing seawater for about 280 d. After very short immersing time, there is a thin yellow rust layer on carbon steel, but as time prolonged, the yellow corrosion products are rushed away quickly, and a tense black rust layer cover about the whole electrode. The corrosion rate obtained by weight–loss method show a steady decline and keep stable after about 84 d, but it is higher than that of the static state system data. The cathodic polarization curves show an obvious reduction current peak at about −950 mV, which makes a remarkable overestimating of the cathodic corrosion current. Polarization resistance (Rp), determined by LPR and EIS, increases during the merely short–initial immersion period, then, it decreases gradually with immersion time. This means that the corrosion rate determined by electrochemical tests shows an another pattern compared with the weight–loss result. After a very short immersion time (about 14 d), there is a remarkable deviation between the weight–loss and electrochemical test results, and the longer immersed the greater of this deviation is. So no matter in static state or flowing seawater, electrochemical methods can not get an accurate corrosion rate of carbon steel. And reliable electrochemical measurement and analysis for rusted steel need much more attention.

Key wordscarbon steel    flowing seawater    rust layer    corrosion rate    deviation
收稿日期: 2012-05-08     
ZTFLH:  O646  
基金资助:

国家自然科学基金资助项目50971118

作者简介: 彭欣, 男, 1985年生, 博士生

[1] Javaherdashti R. Anti corros Methods Mater, 2000; 47(1): 30

[2] Zheng W L, Yu Q. Environment Sensitive Fraction of Steel. Beijing: Chemical Industry Press, 1988: 12

(郑文龙, 于 青. 钢的环境敏感断裂. 北京: 化学工业出版社, 1988: 12)

[3] Zhu Y L, Zhou J, Xiong C J, Ma Z F, Liu Z S. PetrolChem Equip, 2002; 31(1): 14

(朱岳麟, 周健, 熊常健, 马志锋, 刘中生. 石油化工设备, 2002; 31 (1): 14)

[4] Yan M, Huang G Q. Marine Sci, 2005; 29(7): 73

(颜 民, 黄桂桥. 海洋科学, 2005; 29(7): 73)

[5] Cao C N. Corrosion of Chinese Materials in Nature Environment. Beijing: Chemical Industry Press, 2005: 1

(曹楚南. 中国材料的自然环境腐蚀. 北京: 化学工业出版社, 2005: 1)

[6] Xia L T, Huang G Q, Ding L P. Res Studies Foundry Equip, 2002; 4: 14

(夏兰廷, 黄桂桥, 丁路平. 铸造设备研究, 2002; 4: 14)

[7] Huang G Q. Corros Sci Prot Technol, 2001; 13: 81

(黄桂桥. 腐蚀科学与防护技术, 2001; 13: 81)

[8] Qiu Y B, Qi G T, Guo Z H. China Offshore Oil Gas, 1996;8(5): 18

 (邱于兵, 齐公台, 郭稚弧. 中国海上油气, 1996; 8(5): 18)

[9] Zhang W, Wang J, Li Y N, Wang W. Acta Phys Chim Sin, 2010; 26: 2941

(张 伟, 王佳, 李玉楠, 王伟. 物理化学学报, 2010; 26: 2941)

[10] Bousselmi L, Fiaud C, Tribollet B, Triki E. Electrochim Acta, 1999; 44: 4357

[11] John D G, Searosn P C, Dawson J L. Br Corros J, 1981; 16(2): 102

[12] Liu G Z, Wang J M, Zhang J Q, Cao C N. Acta Metall Sin, 2011; 47: 1600

(刘光洲, 王建明, 张鉴清, 曹楚南. 金属学报, 2011; 47: 1600)

[13] Zhang J B, Wang J, Wang Y H. Acta Phys Chim Sin, 2005; 21: 993

(张际标, 王佳, 王燕华. 物理化学学报, 2005; 21: 993)

[14] Gonz´alez J A, Miranda J M, Otero E, Feliu S. Corros Sci, 2007; 49: 436

[15] Zou Y, Zheng Y Y, Wang Y H, Wang J. Acta Metall Sin, 2010; 46: 123

(邹妍, 郑莹莹, 王燕华, 王佳. 金属学报, 2010; 46: 123)

[16] Zou Y, Wang J, Zheng Y Y. Acta Phys Chim Sin, 2010;26: 2361

 (邹妍, 王佳, 郑莹莹. 物理化学学报, 2010; 26: 2361)

[17] Zou Y, Wang J, Zheng Y Y. Corros Sci, 2011; 53: 208

[18] Antony H, Perrin S, Dillmann P, Legrand L, Chauss´e A. Electrochim Acta, 2007; 52: 7754

[19] Andrade C, Keddam M, N´ovoa X R, P´erez M C, Rangel C M, Takenouti H. Electrochim Acta, 2001; 46: 3905

[20] Nov´ak P, Mal´aR, Joska L. Cement Concrete Res, 2001; 31: 589

[21] Copson H R. Corrosion, 1960; 16: 130

[22] Shalaby H M, Attari S, Riad W T. Corrosion, 1992; 48: 206

[23] Nesic S, Solvi G T, Enerhaug J. Corrosion, 1995; 51: 773

[24] Huang G Q. Corros Sci Prot Technol, 2001; 22: 384

(黄桂桥. 腐蚀科学与防护技术, 2001; 22: 384)

[25] Martinez S. Mater Chem Phys, 2002; 77: 97

[26] Stern M, Geary A L. J Electrochem Soc, 1957; 104: 56

[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[3] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[4] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[6] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[7] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[9] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[10] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[11] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[12] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[13] 秦润之, 杜艳霞, 路民旭, 欧莉, 孙海明. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2018, 54(6): 886-894.
[14] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
[15] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.