Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1074-1080    DOI: 10.3724/SP.J.1037.2012.00210
  论文 本期目录 | 过刊浏览 |
低碳钢中残余奥氏体的调控及对力学性能的影响
任勇强, 谢振家, 尚成嘉
北京科技大学材料科学与工程学院, 北京 100083
REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL
REN Yongqiang, XIE Zhenjia, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
, , . REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL[J]. Acta Metall Sin, 2012, 48(9): 1074-1080.

全文: PDF(3395 KB)  
摘要: 采用完全淬火+两相区再加热-淬火-分配(IQ$\&$P)热处理工艺对0.23C-1.8Mn-1.35Si钢进行处理, 获得了具有亚温铁素体、马氏体以及广泛分布于原奥氏体晶界、相界等处的残余奥氏体等构成的多相组织. 利用SEM, XRD以及EBSD等对不同热处理阶段钢的微观组织进行了表征. 结果证实, 该多相组织低合金钢中残余奥氏体的获得主要依赖于以下两点: 一是两相区再加热阶段逆转变奥氏体组织中的富Mn富C, 二是淬火--分配阶段残留奥氏体在分配过程中的二次富C, 通过上述的两步元素富集处理可以使该低碳钢在室温下获得超过10%含量的残余奥氏体, 而残留奥氏体在分配过程中的二次富C则对该类钢中残余奥氏体的形成及其在室温下的稳定化起到了至关重要的作用. 由于广为分布的残余奥氏体在形变过程中的TRIP效应, 使得该类钢种在拉伸变形过程中获得了持续的加工硬化能力, 从而实现了强度与塑性的良好结合. 测试结果表明, IQ&P钢的强塑积超过了26 GPa?%, 屈服强度大于600 MPa, 抗拉强度超过900 MPa, 均匀延伸在16\%以上, 常温半厚冲击韧性达到了39 J.
关键词 低碳钢残余奥氏体马氏体亚温铁素体TRIP效应    
Abstract:The development of high performance steels needs to realize the combination of high strength, high plasticity and high toughness. Multiphase microstructure which contains a specific proportion of retained austenite is conductive to enhance the toughness and plasticity of the steel. Making use of the quenching+intercritical reheating-quenching and partitioning (IQ$\&$P) process, a multiphase microstructure which was composed of intercritical ferrite, martensite and well distributed retained austenite (primarily distributed in the prior austenitic grain boundary and the phase boundary) can be obtained in the 0.23C-1.8Mn-1.35Si steel. By means of SEM, XRD and EBSD, microstructures of the steel in different heat treatment stages were characterized. The results indicated that the obtention of the retained austenite was mainly dependent on the following two stages: the first one is the enrichment of the carbon and manganese in the reversed austenite during the intercritical reheating process; the second stage is the secondary enrichment of carbon in retained austenite during the following quenching and partitioning process. After the two stages of element enrichment treatment, more than 10% volume fraction of retained austenite was obtained, and the second stage of treatment plays an important role in the formation and stabilization of the metastable austenite. Due to the strengthening and toughening effect of the widely distrubuted retained austenite, this kind of steel obtained a continuous work hardening ability, and thus achieved a good combination of strength and plasticity. Test results indicated that steel treated by the IQ&P process shows excellent comprehensive mechanical properties: the product of strength and elongation is greater than 26 GPa?%, the yield strength and tensile stength is more than 600 and 900 MPa respectively, the uniform elongationg is above 16\%, and the half thickness size impact toughness at room temperature reaches to 39 J.
Key wordslow carbon steel    retained austenite    martensite    intercritical ferrite    TRIP effect
收稿日期: 2012-04-17     
ZTFLH: 

TG113

 
基金资助:

国家重点基础研究发展计划资助项目2010CB630801

作者简介: 任勇强, 男, 1983年生, 博士生
[1] McFarlan W H. US Pat, 3378360, 1968

[2] Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311

[3] Matsumura O, Sakuma Y, Takechi H. Scr Metall, 1987; 21: 1301

[4] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1987; 27: 570

[5] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1992; 32: 1014

[6] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775

[7] Gr¨assel O, Frommeyer G. Mater Sci Technol, 1998; 14: 1213

[8] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319–321: 246

[9] Barnett M R. Mater Sci Eng, 2007; A464: 1

[10] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611

[11] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426–432: 1089

[12] Sakuma Y, Matsumura O, Takechi H. Metall Mater Trans, 1991; A22: 489

[13] Herrera C, Ponge D, Raabe D. Acta Mater, 2011; 59: 4653

[14] Girault E, Jacques P, Harlet Ph, Mols K, Van Humbeeck J, Aernoudt E, Delannay F. Mater Charact, 1998; 40: 111

[15] Ray A, Dhua S K. Mater Charact, 1996; 37: 1

[16] Speer J G, Streicher A M, Matlock D K, Rizzo F C, Krauss G. In: Damm E B, Merwin M eds., Austenite Formation and Decomposition, Warrendale: TMS, 2003: 505

[17] Edmonds DV, He K, Rizzo F C, De CoomanB C,Matlock D K, Speer J G. Mater Sci Eng, 2006; A438–440: 25

[18] De Cooman B C, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels. Gyeongju: The Korean Institute of Metals and Materials, 2006: 798

[19] Streicher A M, Speer J G, Matlock D K, De Cooman B C. In: Speer J G ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: AIST, 2004: 51

[20] Speer J G, Edmonds D V, Rizzo F C, Matlock D K. Opin Curr Solid State Mater Sci, 2004; 8: 219

[21] Sugimoto K, Tsunezawa M, Hojo T, Ikeda S. ISIJ Int, 2004; 44: 1608

[22] Raabe D, Ponge D, Dmitrieva O, Sander B. Scr Mater, 2009; 60: 1141

[23] Shi J, Sun X J, Wang M Q, Hui W J, Dong H, Cao W Q. Scr Mater, 2010; 63: 815

[24] Wang C Y, Shi J, CaoWQ, Dong H. Mater Sci Eng, 2010; A527: 3442

[25] Li H Y, Lu X W, Wu X C, Min Y A, Jin X J. Mater Sci Eng, 2010; A527: 6255

[26] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; A40: 46

[27] Mukherjee M, Mohanty O N, Hashimoto S, Hojo T, Sugimoto K. ISIJ Int, 2006; 46: 316

[28] Fan X. Metallic X–ray Physics. Beijing: Mechanical Industry Press, 1989: 159

(范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[29] Sugimoto K, Usui N, Kobayashi M, Hashimoto S. ISIJ Int, 1992; 32: 1311

[30] Cullity B D. Elements of X–ray Diffraction. Massachusetts: Addison–Wesley, 1978: 359

[31] Santofimia M J, Nguyen–Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J. Mater Sci Eng, 2010; A527: 6429

[32] Thomas G A, Speer J G, Matlock D K. Metall Mater Trans, 2011; 42A: 3652

[33] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489

(张 柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董 瀚. 金属学报, 2011; 47: 489)

[34] Santofimia M J, Zhao L, Petrov R, Kwakernaak C, Sloof W G, Sietsma J. Acta Mater, 2011; 59: 6059

[35] Nouri A, Saghafian H, Kheirandish Sh. J Iron Steel Res Int, 2010; 17(5): 44

[36] Speich G R, Demarest V A, Miller R L. Metall Mater Trans, 1981; 12A: 1419

[37] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2011; 42A: 3620
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[3] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[9] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[11] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[12] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[13] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[14] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[15] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.