Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1357-1364    DOI: 10.3724/SP.J.1037.2012.00201
  论文 本期目录 | 过刊浏览 |
交变电场脉冲钝化Fe24Mn4Al5Cr反铁磁定膨胀合金及其耐蚀性研究
朱雪梅, 曹雪梅, 刘明, 雷明凯, 张彦生
1) 大连交通大学材料科学与工程学院, 大连 116028
2) 大连理工大学材料科学与工程学院表面工程实验室, 大连 116024
AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE
ZHU Xuemei, CAO Xuemei, LIU Ming,  LEI Mingkai,  ZHANG Yansheng
1) School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028
2) Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
引用本文:

朱雪梅 曹雪梅 刘明 雷明凯 张彦生. 交变电场脉冲钝化Fe24Mn4Al5Cr反铁磁定膨胀合金及其耐蚀性研究[J]. 金属学报, 2012, 48(11): 1357-1364.
ZHU Xuemei CAO Xuemei LIU Ming LEI Mingkai ZHANG Yansheng. AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE[J]. Acta Metall Sin, 2012, 48(11): 1357-1364.

全文: PDF(833 KB)  
摘要: 

采用交变电场脉冲钝化技术表面改性Fe24Mn4Al5Cr反铁磁定膨胀合金. 在1.0 mol/L Na2SO4溶液中通过脉冲钝化生长钝化膜, 再在1.0 mol/L Na2SO4+0.5 mol/L Na2SO4溶液中测定电位衰减曲线, 以优化脉冲钝化工艺参数. 利用AES和XPS分析优化工艺条件下生长的脉冲钝化膜化学组成、键合状态及其深度分布; 利用阳极极化曲线和电化学阻抗谱测试脉冲钝化膜耐腐蚀性能, 并与直流 620 mV连续钝化15 min生长钝化膜相比较. 研究发现, 脉冲钝化膜中元素Al和Cr富集, 元素 Mn贫化, 具有保护性的Al2O3和Cr2O3氧化物阻碍层增厚. 脉冲钝化膜的阳极极化曲线呈自钝化, 自腐蚀电位Ecorr
由连续钝化膜的-360 mV增至-100 mV, 维钝电流密度emp由 2.6 μA/cm2降至0.7 μA/cm2, 阳极极化性能与AISI 304不锈钢相当. 脉冲钝化膜的EIS与连续钝化膜相比, 其容抗弧直径及|Z|值增加, 相位角平台变宽, 利用等效电路Rs-(Rp//CPE)拟合的脉冲钝化膜电阻Rp由连续钝化膜的14.8 kΩ·cm2增至54.0 kΩ·cm2, 计算的有效电容CB则由14.0 μF/cm2降至10.2 μF/cm2. Fe24Mn4Al5Cr反铁磁定膨胀合金脉冲钝化膜的绝缘性提高, 耐蚀性改善.

关键词 Fe-Mn-Al合金脉冲钝化钝化膜电位衰减阳极极化电化学交流阻抗    
Abstract

An antiferromagnetic Fe24Mn4Al5Cr covar alloy has been impulse-passivated by an alternating current (AC) voltage overlapping a direct current (DC) voltage, in order to improve its corrosion resistance due to the poor corrosion property of austenite matrix with a high Mn content, a low Cr and/or Al content. The impulse-passivated films were obtained in 1.0 mol/L Na2SO4 solution at an AC voltage with modulation amplitude of 180-480 mV during alternating period of 200-400 ms for modification time of 5-15 min, and simultaneously at a DC voltage of 620 mV. The impulse-passivation parameters in 1.0 mol/L Na2SO4 + 0.5 mol/L Ha2SO4 solution were optimized as amplitude of 380 mV, period of 300 ms, and time of 10 min, by using the potential decline curves. The impulse-passivated films on the covar alloy under the optimum parameters were characterized by Auger electron spectroscopy and X-ray photoelectron spectroscopy (AES/XPS), and evaluated by anodic polarization and electrochemical impedance spectroscopy (EIS), respectively, and compared with those of the constant-passivated films at DC voltage of 620 mV for modification time of 15 min. In the impulse-passivated films on the covar alloy, an enrichment of elements Al and Cr, a lack of Mn in a thick barrier film composed of oxides Al2O3 and Cr2O3. The anodic polarization curves of the impulse-passivated films have a self-passivation with the higher corrosion potential of -100 mV and lower passive current density of 0.7 μA/cm2, than those of -360 mV and 2.6 μA/cm2 for the constant-passivated films. These electrochemical polarization behaviors were similar to those of the AISI 304 austenitic stainless steel. The EIS of the impulse-passivated films has larger diameter of capacitive arc, higher impedance modulus $|Z|$, and wider phase degree range,  relative to the constant-passivated films. Correspondently, the impulse-passivated film resistant Rp increased to 54.0 kΩ·cm2 from 14.8 kΩ·cm2 and effective capacitance decreased to 10.2 μF/cm2 from 14.0 μF/cm2, using an equivalent electric circuit of< Rs-(Rp//CPE). The high insulation of the impulse-passivated films on the covar alloy led to an improved corrosion resistance of the cover alloy. The impulse-passivated antiferromagnetic Fe24Mn4Al5Cr covar alloy exhibits an application potential in wide industrial field.

Key wordsFe-Mn-Al alloy    impulse-passivation    passive film    potential decline    anodic polarization    electrochemical impedance spectroscopy
收稿日期: 2012-04-13     
基金资助:

国家自然科学基金资助项目50725519

作者简介: 朱雪梅, 女, 1964年生, 教授

[1] Shi C X, Zhang Y S. Encycl Mater Sci Eng, 1993; 3(Suppl.): 1719

[2] Casteletti L C, Lombardi N A, Totten G E, Heck S C, Fernandes F A P. J ASTM Int, 2010; 7: 102605

[3] Zhu X M, Zhang Y S. Corrosion, 1998; 54: 3

[4] Umino R, Liu X J, Sutou Y, Wang C P, Ohnuma I, Kainuma R, Ishida K. J Phase Equilb Diffus, 2006; 27: 54

[5] Gebhardt T, Music D, Kossmann D, Ekholm M, Abrikosov I A, Vitos L, Schneider J M. Acta Mater, 2011; 59: 3145

[6] Lee J W, Duh J G, Wang J H. Surf Coat Technol, 2003; 168: 223

[7] Jaw J H, Cheng W C, Wang C J. Metall Mater Trans, 2005; 36A: 2289

[8] Su C W, Lee J W, Wang C S, Chao C G, Liu T F. Surf Coat Technol, 2008; 202: 1847

[9] Wang C H, Luo C W, Huang C F, Huang M S, Ou K L, Yu C H. J Alloys Compd, 2011; 509: 691

[10] Zhang Y S, Zhu X M, Liu M, Che R X. Appl Surf Sci, 2004; 222: 89

[11] Zhu X M, Liu M, Zhang Y S. Corros Eng Sci Technol, 2007; 42: 22

[12] Wendt J L, Chin D T. Corros Sci, 1985; 25: 889

[13] Wendt J L, Chin D T. Corros Sci, 1985; 25: 901

[14] Song G L, Cao C N, Wang Y, Lin H C. J Chin Soc Corros Protect, 1991; 11: 319

(宋光铃, 曹楚南, 王友, 林海潮. 中国腐蚀与防护学报, 1991; 11: 319)

[15] Song G L, Cao C N, Lin H C, Xia B J. J Chin Soc Corros Protect, 1992; 12: 77

(宋光铃, 曹楚南, 林海潮, 夏邦杰. 中国腐蚀与防护学报, 1992; 12: 77)

[16] Mansfeld F, Lin S H, Kwiatkowski L. Corrosion, 1994; 50: 838

[17] Zhang J X, Yan L C, Wei Z F, Qiao Y N, Cao C N, Zhang J Q. Acta Metall Sin, 2004; 40: 404

(张俊喜, 颜立成, 魏增福, 乔亦男, 曹楚南, 张鉴清. 金属学报, 2004; 40: 404)

[18] Taveira L V, Montemor M F, Belo M D C, Ferreira M G, Dick L F P. Corros Sci, 2010; 52: 2813

[19] Doff J, Archibong P E, Jones G, Koroleva E V, Skeldon P, Thompson G E. Electrochim Acta, 2011; 56: 3225

[20] Liu X L, Xu Y X, Zhang T, Shao Y W, Meng G Z, Wang F H. Corros Sci Prot Technol, 2009; 21: 188

(刘晓兰, 徐雅欣, 张 涛, 邵亚薇, 孟国哲, 王福会. 腐蚀科学与防护技术, 2009; 21: 188)

[21] Liu X L, Zhang T, Shao Y W, Meng G Z, Wang F H. Corros Sci, 2009; 51: 2685

[22] Sanz J M, Hofmann S. Surf Interface Anal, 1986; 8: 147

[23] Zhu X M, Zhang Y S. Appl Surf Sci, 1998; 125: 11

[24] Trompette J L, Massot L. Corros Sci, 2012; 57: 174

[25] Li Y C, Yan C W, Duan H P. J Chin Soc Corros Protect, 2002; 22: 375

(李运超, 严川伟, 段红平. 中国腐蚀与防护学报, 2002; 22: 375)

[26] Brug J, van den Eeden ALG, Sluyters–Rehbach M, Sluyters J H. J Electroanal Chem, 1984; 176: 275

[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[3] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[6] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[7] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[8] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[9] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[10] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[11] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[12] 武占文,陈吉,朴楠,杨明川. Ni-WC纳米复合镀层的制备及钝化性能研究[J]. 金属学报, 2013, 49(10): 1185-1190.
[13] 檀玉 梁可心 张胜寒. 光电化学响应分析Ni201在中性溶液中形成表面钝化膜的半导体性质[J]. 金属学报, 2012, 48(8): 971-976.
[14] 魏欣,董俊华,佟健,郑志,柯伟. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响[J]. 金属学报, 2012, 48(4): 502-507.
[15] 赵博 杜翠薇 刘智勇 李晓刚 杨吉可 李月强. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(12): 1530-1536.