Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1081-1088    DOI: 10.3724/SP.J.1037.2012.00177
  论文 本期目录 | 过刊浏览 |
抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律
向红亮, 范金春, 刘东, 郭培培
福州大学机械工程及自动化学院, 福州 350108
EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase
XIANG Hongliang, FAN Jinchun, LIU Dong, GUO Peipei
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
全文: PDF(4825 KB)  
摘要: 采用SEM, XRD以及TEM对经抗菌时效处理后的含Cu双相不锈钢中抗菌富Cu相的微观结构及析出演变规律进行了研究. 结果表明, 在 540-580 ℃温度范围内, 双相不锈钢中的铁素体基体及α/γ相界上均有抗菌富Cu相析出, 奥氏体内没有新相的析出; 随时效时间的延长, 析出相逐渐粗化, 并由球形颗粒状转变为棒状或长条状; 随着时效温度的提高, 富Cu相析出速率加快, 较快地由颗粒状转变为棒状; 时效处理过程中, 富Cu相会随时间的延长及温度的提高从亚稳态过渡到稳定的 ε-Cu相; ε-Cu相具有复杂的多层孪晶结构, 与铁素体基体满足Kurdjumov-Sachs取向关系: (111)ε-Cu//(110)α-Fe, [011]ε-Cu//[001]α-Fe, (111)ε-Cu//(121)α-Fe, [011]ε-Cu//[012]α-Fe.
关键词 含Cu双相不锈钢抗菌时效处理富Cu相微观结构    
Abstract:Nowadays, the events of bacterial infection are increasingly arising. It is urgent to develop new antibacterial material to fight against the bacteria having resistance to drug. Because the antibacterial stainless steels have both antibacterial property and other excellent combination ones, their development has been obtained rapidly. At present, the copper-containing antibacterial stainless steels are the research focus. It has been reached that the antibacterial effect of those materials is due to the copper-rich phases precipitated from the matrix by aging treatment. Most of studies were performed at single-phase stainless steels, but rarely at duplex stainless steels. It is necessary to study the precipitation process of copper-rich phases in duplex stainless steels for the development of antibacterial duplex stainless steels. In this work, the microstructure and precipitating evolution law of copper-rich phases in the copper-containing duplex stainless steels during antibacterial aging treatment has been analyzed in detail by SEM, XRD and TEM. The results indicate that antibacterial copper-rich phases are precipitated from ferrite and α/γ interfaces, no precipitation in austenite when the duplex stainless steels are aged at temperature ranging from 540 to 580 ℃. The technique parameters of the aging treatment have important effect on the volume fraction and morphologies of precipitated phase. With aging time increasing, the precipitates coarsen, and their morphologies gradually change from spherical particle to rod-like or long-stripe-like grain. When the aging temperature is raised, precipitation speed of copper-rich phases accelerates and they make the change like before. At the same time,  the copper-rich phases gradually turn from metastable state to steady ε-Cu phase with the composition close to pure copper, which has complicated multilayer structure with twisting layers. The Kurdjumov--Sachs orientation relationships between ε-Cu phases and the ferrite matrix followed: (111)ε-Cu//(110)α-Fe, [011]ε-Cu//[001]α-Fe, (111)ε-Cu//(121)α-Fe, [011]ε-Cu//[012]α-Fe.
Key wordscopper-containing duplex stainless steel    antibacterial aging treatment    copper-rich phase    microstructure
收稿日期: 2012-04-06      出版日期: 2012-09-11
基金资助:

福建省高等学校新世纪优秀人才支持计划资助项目JA10014

通讯作者: 向红亮     E-mail: xhl@fzu.edu.cn
Corresponding author: Hong-Liang XIANG     E-mail: xhl@fzu.edu.cn
作者简介: 向红亮, 男, 1972年生, 副教授, 博士

引用本文:

向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
XIANG Hongliang FAN Jinchun LIU Dong GUO Peipei. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase. Acta Metall Sin, 2012, 48(9): 1081-1088.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00177      或      http://www.ams.org.cn/CN/Y2012/V48/I9/1081

[1] Nakamura S, Suzuki S, Ookubo N, Hasegawa M, Miyakusu K. CAMP-ISIJ, 1998; 11: 1147
[2] Ookubo N, Nakamura S, Yamamoto M, Miyakusu K, Hasegawa M. Nisshin Steel Rep Jpn, 1998; 77: 69
[3] Toyokihara C, Nakamura S, Suzuki S, Miyakusu K, Ookubo S, Hasegawa M. CAMP-ISIJ, 1999; 12: 1179
[4] Chen S H, L¨u M Q, Zhang J D, Dong J S, Yang K. Acta Metall Sin, 2004; 40: 314
(陈四红, 吕曼祺, 张敬党, 董加胜, 杨 柯. 金属学报, 2004; 40: 314)
[5] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213
[6] Lu M Q, Chen S H, Dong J S, Yang K. Chin J Mater Res, 2005; 19: 581
(吕曼祺, 陈四红, 董加胜, 杨柯. 材料研究学报, 2005; 19: 581)
[7] Li H W, Zhang T B, Zhang T Y. Acta Metall Sin, 2008; 44: 39
(李恒武, 张体宝, 张体勇. 金属学报, 2008; 44: 39)
[8] Li N, Yang K. J Mater Sci Technol, 2010; 26: 941
[9] Robert N G. Duplex Stainless Steels: Microstructure, Properties and Applications. Cambridge: Woodhead Publish Ltd, 1997: 3
[10]Sun W S, Ding G R, Luo M W, Wang Z H, Song A Y. Acta Metall Sin, 1996; 32: 245
(孙文山, 丁桂荣, 罗铭蔚, 王智慧, 宋爱英. 金属学报, 1996; 32: 245)
[11]Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46: 304
(向红亮, 黄伟林, 刘东, 何福善. 金属学报, 2010; 46: 304)
[12]Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456
(向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)
[13]Xiang H L, Huang W L, Liu D, He F S, Ruan F R. Trans Mater Heat Treat, 2010; 31(12): 85
(向红亮, 黄伟林, 刘东, 何福善, 阮方如.材料热处理学报, 2010; 31(12): 85)
[14]Martins M, Roossitti S M, Ritoni M. Mater Charact, 2007; 58: 909
[15]Russell S W, Lundin C D. Final Report for the Development of Qualification Standards for Cast Duplex Stainless Steel. Vol.2, Knoxville: University of Tennessee, 2005: 14
[16]Jacek B, Andrzej M. Mater Sci Eng, 2000; A277: 183
[17]Hughes D D. Mater Sci Eng, 1993; A168: 35
[18]Dhua S K, Mukerjee D, Sarma D S. Metall Mater Trans, 2001; 32A: 2259
[19]Murayama M, Hono K, Katayama Y. Metall Mater Trans, 1999; 30A: 345
[20]Zhang Z X, Lin G, Xu Z. Chin J Mater Res, 2008; 29: 93
(张志霞, 林 刚, 徐 洲. 材料研究学报, 2008; 29: 93)
[21]Aaronson H I, Lee J K. In: Aaronson H I ed., Lectures on the Theory of Phase Transformations. Warrendale: TMS-AIME, 1975: 83
[22]Zhang Z X, Lin G, Xu Z. J Mater Sci Technol, 2008; 24: 775
[23]Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073
[1] 董丹,蒋百灵,郭萌,杨超. 碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究[J]. 金属学报, 2017, 53(7): 879-887.
[2] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[3] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[4] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[5] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[6] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[7] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[8] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[9] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[10] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[11] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[12] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[13] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[14] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.
[15] 向红亮 范金春 刘东 顾兴. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.