Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1097-1102    DOI: 10.3724/SP.J.1037.2012.00176
  论文 本期目录 | 过刊浏览 |
添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响
姚美意1, 2), 邹玲红1, 2), 谢兴飞1, 2), 张金龙1, 2), 彭剑超1, 2), 周邦新1, 2)
1) 上海大学微结构重点实验室, 上海 200444
2) 上海大学材料研究所, 上海 200072
EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-4 IN SUPERHEATED STEAM AT 400 ℃/10.3 MPa
YAO Meiyi1, 2),  ZOU Linghong1, 2),  XIE Xingfei1, 2),  ZHANG Jinlong1, 2),  PENG Jianchao1, 2),  ZHOU Bangxin1, 2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
引用本文:

姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.
, , , , , . EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-4 IN SUPERHEATED STEAM AT 400 ℃/10.3 MPa[J]. Acta Metall Sin, 2012, 48(9): 1097-1102.

全文: PDF(1832 KB)  
摘要: 在Zr-4合金基础上添加0.1%-0.5%Bi(质量分数)制备成Zr-4+xBi合金, 用高压釜腐蚀实验研究了 Bi含量对Zr-4+xBi合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响; 用TEM, EDS和SEM观察了合金和合金腐蚀后氧化膜的显微组织. 结果表明: 随着Bi含量的增加, Zr-4+xBi合金中第二相的尺寸和形状变化不大, 但数量增多, 并出现了不同成分的第二相, 包括Zr(Fe, Cr)2, Zr-Fe-Cr-Bi, Zr-Fe-Sn-Bi和 Zr-Fe-Cr-Sn-Bi. 在Zr-4+0.1Bi合金中检测到了含Bi的第二相, 这说明580 ℃时Bi在Zr-4+$x$Bi合金α-Zr基体中的固溶度小于0.1%. 另外, 适量Bi的添加促进了原先固溶在α-Zr基体中Sn的析出. 与Zr-4合金相比, 在Zr-4中添加0.1%-0.5% Bi后合金的耐腐蚀性能反而下降, 并随着Bi含量的增加耐腐蚀<性能恶化趋势越显著, 这说明Zr-4合金中添加Bi并不能改善合金的耐腐蚀性能, 反而产生有害的影响, 这应该与含Bi第二相和同时含有Bi, Sn第二相的析出有关.
关键词 锆合金Bi耐腐蚀性能显微组织    
Abstract:The effect of Bi contents on the corrosion resistance of Zr-4+xBi (x=0.1%-0.5%, mass fraction)
alloys, which were prepared by adding Bi to Zr-4, was investigated in superheated steam at 400 ℃ and
10.3 MPa by autoclave tests. The microstructures of the alloys and fracture surface morphology of the oxide film
formed on the alloys were observed by TEM, EDS and SEM. The results show that with the increase of Bi content,
the second phase particles (SPPs) are almost the same in size and shape, but increase in amount and vary in
composition, including Zr(Fe, Cr)2, Zr-Fe-Cr-Bi, Zr-Fe-Sn-Bi and Zr-Fe-Cr-Sn-Bi. Even in the
Zr-4+0.1Bi alloy, Bi--containing SPPs were detected. This indicates that the solid solubility of Bi in α-Zr
matrix of Zr-4+xBi alloys is less than 0.1% at 580 ℃. Moreover, the addition of Bi promotes the precipitation
of Sn which originally dissolved in the α-Zr matrix of Zr-4. Compared with Zr-4, the addition
of Bi makes the corrosion resistance worse, and it becomes more obvious with the increase of Bi content. This
illustrates that the addition of Bi can not improve the corrosion resistance, on the contrary, it brings a harmful
influence. This may be related to the precipitation of the Bi-containing and Bi-Sn-containing SPPs.
Key wordszirconium alloy    Bi, corrosion resistance    microstructure
收稿日期: 2012-04-06     
ZTFLH: 

TL341

 
基金资助:

国家自然科学基金项目50971084, 国家先进压水堆重大专项2011ZX06004--023和上海市重点学科建设项目S30107资助

作者简介: 姚美意, 女, 1973年生, 副研究员
[1] Sabol G P. In: Rudling P, Kammenzind B eds., Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, Stockholm: ASTM International, 2004: 3

[2] Sabol G P, Comstock R J, Weiner R A. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Baltimore, MD: ASTM International, 1994: 724

[3] Nikulina A V, Markelov V A, Peregud M M. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch–Partenkirchen, Germany: ASTM International, 1996: 785

[4] Zhao W J, Miao Z, Jiang H M, Yu X W, Li W J, Li C, Zhou B X. J Chin Soc Corros Prot, 2002; 22: 124

(赵文金, 苗志, 蒋宏曼, 于晓卫, 李卫军, 李聪, 周邦新. 中国腐蚀与防护学报, 2002; 22: 124)

[5] Park J–Y, Yoo S J, Choi B–K, Jeong Y H. J Nucl Mater, 2008; 373: 343

[6] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113

[7] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865

(姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)

[8] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163

(李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新. 金属学报, 2011; 47: 163)

[9] Li P Z, Li Z K. Rare Met Mater Eng, 1998; 27: 356

(李佩志, 李中奎. 稀有金属材料与工程, 1998; 27: 356)

[10] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26(4): 364

(周邦新, 李 强, 姚美意, 刘文庆. 核动力工程, 2005; 26(4): 364)

[11] Li C, Li P, Zhou B X, Zhao W J, Peng Q, Ying S H, Shen B L. Nucl Power Eng, 2002; 23(4): 20

(李聪, 李蓓, 周邦新, 赵文金, 彭 倩, 应诗浩, 沈保罗. 核动力工程, 2002; 23(4): 20)

[12] Foster J P, Dougherty J, Burke M G. J Nucl Mater, 1990; 173: 164

[13] Charquet D. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 3

[14] Eucken C M, Finden P T. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 113

[15] Takeda K, Anada H. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 592

[16] Garzarolli F, Broy Y, Busch R A. In: Bradley E R, Sabol G P Eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch– Partenkirchen, Germany: ASTM International, 1996: 850

[17] Graham R A, Tosdale J P, Finden P T L F P. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 334

[18] Yang W D. Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版, 北京: 原子能出版社, 2006: 260)

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)

[20] Cox B. J Nucl Mater, 1969; 29: 50

[21] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. J ASTM Int, 2008; 5: 360

[22] Charquet D, Hanh R, Ortlib E. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry, Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 405

[23] Yao M Y, Zhou B X, Li Q, Liu W Q, Yu W J, Chu Y L. J Nucl Mater, 2008; 374: 197

[24] Shen Y F, Yao M Y, Zhang X, Li Q, Zhou B X, Zhao W J. Acta Metall Sin, 2011; 47: 899

(沈月锋, 姚美意, 张 欣, 李强, 周邦新, 赵文金. 金属学报, 2011; 47: 899)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.