Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1166-1174    DOI: 10.3724/SP.J.1037.2012.00173
  论文 本期目录 | 过刊浏览 |
17%Cr铁素体不锈钢中的第二相与织构
高飞1,  刘振宇1,  张维娜1,  刘海涛1, 孙广庭2, 王国栋1
1. 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2. 济钢集团工程技术有限公司, 济南250101
TEXTURES AND PRECIPITATES IN A 17%Cr FERRITIC STAINLESS STEELS
GAO Fei 1, LIU Zhenyu 1, ZHANG Weina 1, LIU Haitao 1, SUN Guangting 2,WANG Guodong 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Jigang International Engineering Technolgy Co. Ltd., Jinan 250101
全文: PDF(3934 KB)  
摘要: 

通过工艺控制得到了不同尺寸及分布特征的析出相, 研究了其对再结晶织构的影响. 结果表明: 降低精轧温度有利于尺寸更加细小、分布更加弥散的析出相TiC的形成, 经冷轧及退火后这种析出相分布特征可遗传至冷轧退火板; 粗大、稀疏析出相的样品具有较强的γ纤维再结晶织构; 细小、弥散的析出相有助于随机取向再结晶晶核的形成, 抑制再结晶晶粒的长大, 从而弱化了γ纤维再结晶织构及恶化了冷轧退火板成形性能; 析出相对随机取向晶粒形核的作用及晶界迁移的钉扎作用是控制铁素体不锈钢再结晶织构的重要因素之一.

关键词 17%Cr铁素体不锈钢 析出相 织构 再结晶    
Abstract

Improved mechanical properties of ferritic stainless steels (FSSs), such as toughness and high temperature or creep resistance, have been attained through the addition of stabilizing elements such as Nb and/or Ti. Therefore, stabilized ferritic stainless steels are good candidates to replace the conventional Cr–Ni austenitic stainless steels for specific applications to save the higher price of Ni. As compared to austenitic stainless steels, however, ferritic stainless steels possess lower formability which is closely depends on the γ–fiber recrystallization texture. Hence, improvement of formability is desired for further wide applications of FSSs. The stabilizing effects of alloying elements work by consuming not only the interstitial atoms in solid solution but also forming the carbide and nitride precipitates such as TiC, TiN and NbC. The precipitation takes place in steel making processes such as slab reheating, hot rolling and coiling. The parameters involving these processes have their effects on the size, shape and distribution of the precipitates that influence the γ–fiber recrystallization texture. Many papers intended to clarify the effect of precipitates. However, there were differences concerning the effect of precipitates, which may hinder further improvement of formability. In the present paper, precipitate size and dispersion were changed by controlling hot rolling processes and the effect of precipitate size and dispersion on the development of recrystallizaton texture in a 17%Cr ferritic stainless steels was investigated. Mechanical properties were measured by tensile tests. The characteristics of precipitate were observed by transmission electron microscopy, and X–ray diffraction was used to characterize texture evolution processes. The results show that low temperature finish rolling promotes the formation of a large number of fine and dispersed TiC precipitates in the hot band. After rolling and annealing, the state of fine and dispersed precipitation can be inherited in the cold rolled and annealed sheets. Strong γ–fiber recrystallizaton texture is developed in the specimen with sparsely distributed and coarse precipitates. Fine and dispersed precipitates promote the nucleation of randomly oriented grains, strongly suppress the growth of recrystallized grain, and thereby weakening γ–fiber recrystallizaton texture and impairing the formability of the cold rolled and annealed sheets. The precipitates have significant effects on the nucleation of randomly oriented grains and pinning grain boundary mobility during recrystallization annealing after cold rolling, which plays an important roles in controlling the γ–fiber recrystallizaton texture in a ferritic stainless steels.

Key words17%Cr ferritic stainless steel    precipitate    texture    recrystallization
收稿日期: 2012-04-05      出版日期: 2012-10-11
ZTFLH:  TG113  
基金资助:

国家自然科学基金项目50734002和51004035, 以及中央高校基本科研业务费专项项目N100507002资助

通讯作者: 刘振宇     E-mail: zyliu@mail.neu.edu.cn
作者简介: 高飞, 男, 1985年生, 博士生

引用本文:

高飞 刘振宇 张维娜 刘海涛 孙广庭 王国栋. 17%Cr铁素体不锈钢中的第二相与织构[J]. 金属学报, 2012, 48(10): 1166-1174.
GAO Fei LIU Zhenyu ZHANG Weina LIU Haitao SUN Guangting WANG Guodong. TEXTURES AND PRECIPITATES IN A 17%Cr FERRITIC STAINLESS STEELS. Acta Metall Sin, 2012, 48(10): 1166-1174.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00173      或      http://www.ams.org.cn/CN/Y2012/V48/I10/1166

[1] Yazawa Y, Ozaki Y, Kato Y. JSAE Rev, 2003; 24: 483
[2] Liu H T, Liu Z Y, Wang G D. ISIJ Int, 2009; 49: 890
[3] Miyamoto H, Xiao T, Uenoya T, Hatano M. ISIJ Int, 2010; 50: 1653
[4] Siqueira R P, Sandim H R Z, Oliveira T R. Mater Sci Eng, 2008; A497: 216
[5] Zhang C, Liu Z Y,Wang G D. J Mater Process Tech, 2011; 211: 1051
[6] Almagro J F, Llovet X, Heredia M A, Luna C, Sanchez R. Microchim Acta, 2008; 161: 323
[7] Raabe D, L¨ucke K. Scr Metall, 1992; 27: 1533
[8] Raabe D, H¨olscher M, Dubke M, Reher F, L¨ucke K. Steel Res, 1993; 64: 359
[9] Raabe D. J Mater Sci, 1996; 31: 3839
[10] H¨olscher M, Raabe D, L¨ucke K. Steel Res, 1991; 62: 567
[11] Raabe D, L¨ucke K. Scr Metall Mater, 1992; 26: 19
[12] Sinclair C W, Robaut F, Maniguet L, Mithieux J D, Schmitt J H, Brechet Y. Adv Eng Mater, 2003; 5: 570
[13] Sinclair C W, Mithieux J D, Schmitt J H, Brechet Y. Metall Mater Trans, 2005; 36A: 3205
[14] Zhang C. PhD Thesis, Northeastern University, Shenyang, 2011(张驰. 东北大学博士学位论文, 沈阳, 2011)
[15] Barnett M R, Jonas J J. ISIJ Int, 1997; 37: 697
[16] Pandit A, Murugaiyan A, Saha Podder A, Haldar A, Bhattacharjee D, Chandra S, Ray R K. Scr Mater, 2005; 53: 1309
[17] Sun W P, Militaer M, Jonas J J. Metall Trans, 1992; 23A: 821
[18] Chang S K, Kang H J. Steel Res Int, 1995; 66: 463
[19] Liu H T. PhD Thesis, Northeastern University, Shenyang, 2009(刘海涛. 东北大学博士学位论文, 沈阳, 2009)
[20] Gao F, Liu Z Y, Liu H T, Wang G D. Acta Metall Sin (Engl Lett), 2011; 24: 343
[21] Huh M Y, Engler O. Mater Sci Eng, 2001; A308: 74
[22] Uematsu Y, Yamazaki Y. Tetsu Hagane, 1992; 78: 632
[23] Park S H, Kim K Y, Lee Y D, Park C G. ISIJ Int, 2002; 42: 100
[24] Kang H G, Huh M Y, Park S H, Engler O. Steel Res Int, 2008; 79: 489
[25] Hamada J, Ono N, Inoue H. ISIJ Int, 2011; 51: 1740
[26] Liu H T, Ma D X, Liu Z Y, Wang G D. J Iron Steel Res, 2010; 22(8): 31(刘海涛, 马东旭, 刘振宇, 王国栋. 钢铁研究学报, 2010; 22(8): 31)
[27] Satoh S, Obara T, Nishida K, Irie T. Trans ISIJ, 1986; 26: 838
[28] Huh M Y, Kim H C, Engler O. Steel Res, 2000; 71: 239
[29] Kubodera H, Inagaki H. Bull Jpn Inst Met, 1986; 7: 383
[30] Satoh S, Obara T, Tsunoyama K. Trans ISIJ, 1986; 26: 737
[31] Subramaniam S V, Prikryl M, Gaulin B D, Clifford D D, Benincasa S, Reilly I O’. ISIJ Int, 1994; 34: 61
[32] Zener C, Smith S C. Trans AIME, 1984; 175: 47
[33] Verbeken K, Kestens L, Jonas J J. Scr Mater, 2003; 48: 1457
[34] Ray R K, Jonas J J, Hook R E. Int Mater Rev, 1994; 39: 129
[35] Pereloma E V, Gazder A A, Jonas J J, Miller M K, Davies C H J. ISIJ Int, 2008; 48: 1443
[1] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[2] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[3] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[4] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[5] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[6] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[7] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[8] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[9] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[10] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[11] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[12] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[13] 何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
[14] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[15] 李振亮,刘飞,袁爱萍,段宝玉,李晓伟,李一鸣. 轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响*[J]. 金属学报, 2016, 52(8): 938-944.