Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1237-1247    DOI: 10.3724/SP.J.1037.2012.00172
  论文 本期目录 | 过刊浏览 |
HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成
石倩颖1,2,李相辉3,郑运荣2,谢光4, 张健4,5, 冯强1,2
1. 北京科技大学新金属材料国家重点实验室, 北京 100083\par
2. 北京科技大学国家材料服役安全科学中心, 北京 100083\par
3. 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095\par
4. 中国科学院金属研究所高温合金部, 沈阳 110016\par
5. 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
FORMATION OF SOLIDIFICATION AND HOMOGENISATION MICROPORES IN TWO SINGLE CRYSTAL SUPERALLOYS PRODUCED BY HRS AND LMC PROCESSES
SHI Qianying 1,2, LI Xianghui 3, ZHENG Yunrong 2, XIE Guang 4,ZHANG Jian 4,5, FENG Qiang 1,2
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3. Science and Technology on Advanced High Temperature Structural Material, Beijing Institute of Aeronautical Materials, Beijing 100095
4. Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
5. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

石倩颖 李相辉 郑运荣 谢光 张健 冯强. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成[J]. 金属学报, 2012, 48(10): 1237-1247.

全文: PDF(3586 KB)  
摘要: 

通过对传统定向凝固(HRS)及液态金属冷却(LMC)$\,$2种工艺制备的镍基单晶高温合金铸态微孔和固溶微孔尺寸与分布的定量表征,分析了制备工艺以及合金成分对单晶合金铸态及固溶微孔形成的影响. 结果表明: 合金成分的差异导致本研究中HRS合金铸态微孔体积分数低于LMC合金. 2种合金经固溶热处理后, 在靠近表面的贫Al层及附近均形成大量的圆形固溶微孔, 该类微孔的数量随着与表面的远离而减少. 高温空气环境下Al向表面扩散形成贫Al层, 进而由于Kirkendall效应形成近表面固溶微孔. 高温下枝晶干和枝晶间的元素在扩散过程中产生的Kirkendall效应是合金内部固溶微孔的主要成因. LMC合金较小的一次枝晶臂间距和较低的元素凝固偏析程度使得其内部产生的固溶微孔数量远小于HRS合金.

关键词 单晶高温合金 微孔 固溶处理 定向凝固 液态金属冷却    
Abstract

Effects of processing techniques and alloying chemistry on the formation of solidification and homogenization micropores were investigated in this study for two single crystal nickel–based superalloys with different compositions produced by Bridgman (HRS) and LMC processes. The results show that the volume fraction of micropores in as–cast HRS alloy is lower than that in as–cast LMC alloy, and they are mainly influenced by alloy chemistry. After solution heat treatment, external and internal homogenization micropores are observed to form at the Al–depletion zone near the surface region and the internal zone away from the surface, respectively. The number of external homogenization micropores reduces with increasing the distance away from the surface. Responding to high temperature oxidizing environment (in air), the formation of such homogenization micropores is ascribed to fast outward diffusion of Al, which lead to the formation of Kirkendall voids within the Al–depletion zone. Additionally, the formation of internal homogenization micropores at high temperature is due to Kirkendall effect during the diffusion process of alloying elements between dendrite and interdendrite regions. Smaller primary dendrite arm spacing and lower level of solidification segregation in the LMC alloy results in much less internal homogenization micropores in comparison with the HRS alloy.

Key wordssingle crystal superalloy    micropore    solution treatment    directional solidification    liquid metal cooling
收稿日期: 2012-04-05     
基金资助:

国家重点基础研究发展计划资助项目2010CB631201

作者简介: 石倩颖, 女, 1986年生, 博士生

[1] Hu Z Q, Liu L R, Jin T, Sun X F. Aerial Eng, 2005; 31(3): 1

(胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)

[2] Pollock T M, Tin S. J Propul Power, 2006; 22: 361

[3] Guo J T. Materials Science and Engineering for Superalloys (Vol.1). Beijing: Science Press, 2008: 387

(郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 387)

[4] Chen Q Z, Jones N, Knowles D M. Acta Mater, 2002; 50: 1095

[5] MacLachlan D W, Knowles D M. Mater Sci Eng, 2001; A302: 275

[6] Wang Z H, Zhao N R, Li J G, Hou G C, Jin T, Sun X F, Hu Z Q. J Mater Eng, 2008; (12): 46

(王志辉, 赵乃仁, 李金国, 侯贵臣, 金涛, 孙晓峰, 胡壮麒. 材料工程, 2008; (12): 46)

[7] Ott M, Mughrabi H. Mater Sci Eng, 1999; A272: 24

[8] Gayda J, Miner R V. Int J Fatigue, 1983; 5(3): 135

[9] Anton D L. Acta Metall, 1984; 32: 1669

[10] Link T, Zabler S, Epishin A, Haibel A, Bansal M, Thibault X. Mater Sci Eng, 2006; A425: 47

[11] Lecomte–Beckers J. Metall Mater Trans, 1988; 19A: 2341

[12] Anton D L, Giamei A F. Mater Sci Eng, 1985; 76: 173

[13] Bokstein B S, Epishin A I, Link T, Esin V A, Rodin A O, Svetlov I L. Scr Mater, 2007; 57: 801

[14] Toloraya V N, Svetlov I L. Metally, 1991; 5: 70

[15] Komenda J, Henderson P J. Scr Mater, 1997; 37: 1821

[16] Epishin A, Link T. Philos Mag, 2004; 84: 1979

[17] Zhang J, Li J, Jin T, Sun X, Hu Z. J Mater Sci Technol, 2010; 26: 889

[18] Wilson B C, Cutler E R, Fuchs G E. Mater Sci Eng, 2008;A479: 356

[19] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Lett, 2004; 58: 2290

[20] Lamm M, Singer R F. Metall Mater Trans, 2007; 38A: 1177

[21] Fritzemeier L G. In: Duhl D N, Maurer G, Antolovich S, Lund C, Reichman S, eds., Superalloys 1988, Chamption, PA: TMS, 1988: 265

[22] Chen Q Z, Kong Y H, Jones C N, Knowles DM. Scr Mater, 2004; 51: 155

[23] Elliott A J, Pollock T M. Metall Mater Trans, 2007; 38A: 871

[24] Brundidge C L, Vandrasek D, Wang B, Pollock T M. Metall Mater Trans, 2012; 43A: 965

[25] Elliott A, Pollock T, Tin S, King W, Huang S C, Gigliotti M. Metall Mater Trans, 2004; 35A: 3221

[26] Lohm¨uller A, Eber W, Grobmann J, Hoerdler M, Preuhs J, Singer R. In: Green K A, Pollock T M, Kissinger R D, eds., Superalloys 2000, Champion, PA: TMS, 2000: 181

[27] Grossman J, Preuhs J, Esser W, Singer R F. In: Mitchell A, Ridgway L, Baldwin M, eds., Symposium Liquid Metal Processing Casting, New York, NY: AVS, 1999: 31

[28] Elliott A J, Feng G, Balsone S J, Schaeffer J C, Pollock T M, Gigliotti M F X. In: Srivatsan T S, ed., Processing and Fabrication of Advanced Materials XIV With Frontiers in

Materials Science 2005, Pittsburgh, PA: TMS, 2005, 267

[29] Tang W S, Shen J, Wang D W, Zhang J, Lou L H. In: The Minerals, Metals & Materials Society, eds., TMS 2009 138th TMS Annual Meeting and Exhibition–Supplemental

Proceedings, Vol.1: Materials Proceeding and Properties, San Francisco, CA: TMS, 2009: 241

[30] Liu C, Li K W, Shen J, Zhang J, Lou L H. Metall Mater Trans, 2012; 43A: 405

[31] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11

[32] Feng Q, Carroll L J, Pollock T M. Metall Mater Trans, 2006; 37A: 1949

[33] Hussain N, Shahid K A, Khan I H, Rahman S. Oxid Met, 1995; 43: 363

[34] Weber J H, Gilman P S. Scr Metall, 1984; 18: 479

[35] Rosenstein A, Tien J, Nix W. Metall Mater Trans, 1986; 17A: 151

[36] Levy M, Farrell P, Pettit F. Corrosion, 1986; 42: 708

[37] Karunaratne M S A, Cox D C, Carter P, Reed R C. In: Green K A, Pollock T M, Kissinger R D, eds., Superalloys 2000, Champion, PA: TMS, 2000: 263

[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[7] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[11] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[12] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[13] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[14] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[15] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.