Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1049-1056    DOI: 10.3724/SP.J.1037.2012.00093
  论文 本期目录 | 过刊浏览 |
FC Mold II电磁制动中磁场匹配对金属液流影响
贾皓, 张振强, 于湛, 邓康, 雷作胜, 任忠鸣
上海大学材料学院, 上海 200072
INFLUENCE OF MAGNETIC FIELD INTENSITY MATCH OF FC MOLD II ON METAL FLOW
JIA Hao, ZHANG Zhenqiang, YU Zhan, DENG Kang, LEI Zuosheng, REN Zhongming
School of Materials, Shanghai University, Shanghai 200072
引用本文:

贾皓 张振强 于湛 邓康 雷作胜 任忠鸣. FC Mold II电磁制动中磁场匹配对金属液流影响[J]. 金属学报, 2012, 48(9): 1049-1056.
, , , , , . INFLUENCE OF MAGNETIC FIELD INTENSITY MATCH OF FC MOLD II ON METAL FLOW[J]. Acta Metall Sin, 2012, 48(9): 1049-1056.

全文: PDF(3702 KB)  
摘要: 通过物理模拟实验研究板坯连铸流动控制结晶器(flow control mold II, 即FC Mold II)电磁制动过程中, 磁场强度和分布对结晶器内金属液流动的影响规律. 实验中, 以水银为模拟工质, 在模型拉速为0.41, 0.52和0.82 m/min(分别相当于生产拉速1.00, 1.30和2.00 m/min), 电磁制动的上区磁场强度B1=0.18, 0.36和0.50 T, 下区磁场保持B2=0.50 T不变的匹配(组合)条件下, 考察结晶器(模型)内的水银流态和流速分布, 并以此分析上、下区磁场强度匹配(组合)对水口出流、液面流动以及结晶器窄面模壁所受冲刷等的影响规律. 结果表明, 在上述拉速条件下, FC Mold II电磁制动的上、下区磁场强度匹配关系, 分别取B1/B2=0.36, 0.72和1.00时, 结晶器中金属液的制动效果最好.
关键词 板坯连铸流动控制结晶器金属流动电磁制动物理模拟    
Abstract:Electromagnetic brake (EMBr) affects the flow field in mold during the slab continuous casting process. Flow control mold II (FC Mold II) has been developed to resolve the defects of the third generation (flow control mold) of EMBr which the braking effect on meniscus is too strong to make the surface flow excessively stabilize and it would be prone to freezing and related defects. To gain a fundamental understanding of FC Mold II, a mercury physical model was developed to investigate the influence of the magnetic field intensity match on metal flow in FC Mold II based on the\linebreak 1350 mm×230 mm slab continuous casting process in a factory. The flow regime and velocity distribution in mold were measured by ultrasound Doppler velocimeter (UDV) with the maximum magnetic field intensity of the upper pair of magnetic poles B1=0.18, 0.36 and 0.50 T respectively and the maximum magnetic field intensity of the down pair of magnetic poles B2=0.50 T, while the mold casting speed is 0.41, 0.52 and 0.82 m/min respectively corresponding to the practical casting speed 1.00, 1.30 and 2.00 m/min respectively. The influences of the magnetic field intensity match on the flow discharged from the nozzle, the flow near the meniscus and the washing intensity to the mold narrow wall were analyzed and studied. The results showed that, when the magnetic field intensity match of the upper and the lower pair of magnetic poles B1/B2≤1, with the continuous casting speed increasing, the value of B1/B2 should increase in order to get an ideal braking effect. The value of B1/B2 should be 0.36, 0.72 and 1.00 respectively when the model casting speed is 0.41, 0.52 and 0.82 m/min respectively. The increasing of the intensity of the magnetic field reduces the “flow passage” effect caused by EMBr, and is conducive to the formation of the plug flow under the electromagnetic braking region.
Key wordscontinuous casting of slab    FC Mold II    metal flow    electromagnetic braking    physical simulation
收稿日期: 2012-02-24     
基金资助:

国家自然科学基金资助项目50674066

作者简介: 贾皓, 男, 1988年生, 硕士生
[1] Ttimmel K, Eckert S, Gerbeth G. Metall Mater Trans, 2011; 42B: 68

[2] Cukierski K, Thomas B G. Metall Mater Trans, 2008; 39B: 94

[3] Li B K, Tsukihashi F. ISIJ Int, 2006; 26: 1833

[4] Yu Z, Zhang Z Q, Ren ZM, Lei Z S, Deng K. Acta Metall Sin, 2010; 46: 1275

(于湛, 张振强, 任忠鸣, 雷作胜, 邓康. 金属学报, 2010; 46: 1275)

[5] Harada H, Toh T, Ishii T, Kaneko K, Takeuchi E. ISIJ Int, 2001; 41: 1236

[6] Hwang Y S, Cha P R, Nam H S, Moon K H, Yoon J K. ISIJ Int, 1997; 37: 659

[7] Mao B. Contin Cast, 1999; 6: 37

(毛斌. 连铸, 1999; 6: 37)

[8] Thomas B G, Mika L J, Najjar F M. Metall Mater Trans, 1990; 21B: 387

[9] Lei H, Xu G J, He J C. Chem Eng Technol, 2007; 30: 1650

[10] Garcia–Hernandez S, Morales R D, Torres–Alonso E. Ironmaking Steelmaking, 2010; 37: 360

[11] Zhong D Q, Yu L W. ISIJ Int, 2004; 44: 100

[12] Choi S L, Ryu K J, Park H S. Met Mater Int, 2002; 8: 527

[13] Wang Y F, Zhang L F. Metall Mater Trans, 2011; 42B: 1319

[14] Chaudhary R, Thomas B G, Vanka S P. Metall Mater Trans, 2012; 43B: 532

[15] Klaus T, Sven E, Gunter G. Metall Mater Trans, 2011; 42B: 68

[16] Qian Z D, Wu Y L. ISIJ Int, 2004; 44: 100

[17] Yu H Q, Wang B F, Li H Q, Li J C. J Mater Process Technol, 2008; 202: 179

[18] Che Z H, Wang E G, Lei H, He J C. Iron Steel, 2008; 43(8): 25

(陈芝会, 王恩刚, 雷洪, 赫冀成. 钢铁, 2008; 43(8): 25)

[19] Li B K, Okane T, Umeda T. Metall Mater Trans, 2000; 31B: 1491

[20] Timmel K, Eckert S, Gerbeth G, Stefani F, Wondrak T.ISIJ Int, 2010; 50: 1134

[21] Wang M, Jia H, Zhang Z Q, Deng K. Shanghai Met, 2011; 33(6): 41

(王 敏, 贾 皓, 张振强, 邓 康. 上海金属, 2011; 33(6): 41)

[22] Jia H, Wang M , Zhang Z Q, Deng K, Lei Z S, Ren Z M. Shanghai Met, 2012; 34: 53

(贾 皓, 王 敏, 张振强, 邓 康, 雷作胜, 任忠鸣. 上海金属, 2012; 34: 53)

[23] Brito D, Nataf H C, Cardin P, Aubert J, Masson J P. Exp Fluids, 2001; 31: 653

[24] Yu Z, Lei Z S, Jia H H, Jin X L, Ren Z M, Deng K, Zhong Y B. Shanghai Met, 2007; 29(2): 54

(于湛, 雷作胜, 贾洪海, 金小礼, 任忠鸣, 邓康, 钟云波. 上海金属, 2007; 29(2): 54)

[25] Wang Y, Zhang Z Q, Yu Z, Jia H, Deng K, Lei Z S, Ren Z M. Acta Metall Sin, 2011; 47: 1285

(王寅, 张振强, 于 湛, 贾 皓, 邓 康, 雷作胜, 任忠鸣. 金属学报, 2011; 47: 1285)
[1] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[2] 何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.
[3] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[4] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[5] 蔡兆镇 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究 I. 数学模型[J]. 金属学报, 2011, 47(6): 671-677.
[6] 蔡兆镇 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究  II. 模型验证与结果分析[J]. 金属学报, 2011, 47(6): 678-687.
[7] 王寅 张振强 于湛 贾皓 邓康 雷作胜 任忠鸣. 射流型磁场排布方式控制结晶器内液流的实验研究[J]. 金属学报, 2011, 47(10): 1285-1291.
[8] 李宝宽 代凤羽 齐凤升 杨冉. 双水口注流连铸复合钢坯结晶器流场和合金元素浓度场研究[J]. 金属学报, 2010, 46(6): 736-742.
[9] 于湛 张振强 任忠鸣 雷作胜 邓康. 板坯电磁制动结晶器内流体流动的研究[J]. 金属学报, 2010, 46(10): 1275-1280.
[10] 于海岐 朱苗勇. 板坯连铸结晶器内钢液过热消除过程的数值模拟[J]. 金属学报, 2009, 45(4): 476-484.
[11] 于海岐; 朱苗勇 . 板坯结晶器电磁制动和吹氩过程的钢/渣界面行为[J]. 金属学报, 2008, 44(9): 1141-1148 .
[12] 于海岐; 朱苗勇 . 板坯连铸结晶器电磁制动和吹氩过程的多相流动现象[J]. 金属学报, 2008, 44(5): 619-625 .
[13] 周晓光; 刘振宇; 吴迪; 王国栋; 刘相华 . FTSR热轧含Nb钢动态再结晶数学模型中参数的确定[J]. 金属学报, 2008, 44(10): 1188-1192 .
[14] 陈芝会; 王恩刚; 张兴武; 赫冀成 . 静磁场对吹氩结晶器内弯月面行为的影响[J]. 金属学报, 2007, 43(4): 422-426 .
[15] 杨刚; 李宝宽; 于洋; 齐凤升 . 薄板坯连铸结晶器铜板的三维传热分析[J]. 金属学报, 2007, 43(3): 332-326 .