Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 615-620    DOI: 10.3724/SP.J.1037.2012.00069
  论文 本期目录 | 过刊浏览 |
来流对Al-Cu合金三维树枝晶生长的影响
张显飞1,2,赵九洲1
1. 中国科学院金属研究所, 沈阳 110016
2. 沈阳理工大学材料科学与工程学院, 沈阳 110159
EFFECT OF FORCED FLOW ON THREE DIMENSIONAL DENDRITIC GROWTH OF Al-Cu ALLOYS
ZHANG Xianfei1,2, ZHAO Jiuzhou1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Material Science and Engineering, Shenyang Ligong University,Shenyang 110159
引用本文:

张显飞,赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48(5): 615-620.

全文: PDF(1657 KB)  
摘要: 建立了模拟二元合金树枝晶生长的三维元胞自动机模型, 以Al-4%Cu(质量分数)为模型合金, 模拟了合金过冷熔体中树枝晶的生长过程, 研究了来流对枝晶生长的影响. 结果表明, 来流对合金过冷熔体中三维树枝晶生长影响显著, 迎流侧枝晶尖端生长速度随来流速度的增大而增大, 枝晶尖端半径随来流速度的增大而减小; 随着来流速度的增大, 枝晶尖端选择参数减小; 在给定过冷度条件下, 随界面能各向异性的增大, 来流对枝晶尖端选择参数的影响增强; 对于给定的合金(或界面能各向异性), 来流对枝晶尖端选择参数的影响随着过冷度的增大而增强.
关键词 Al-Cu合金三维树枝晶生长来流元胞自动机    
Abstract:The dendrite morphology is determined by the interaction between the capillarity effect and the transports of heat and solute, and is significantly altered by the presence of fluid flow during solidification. A lot of numerical models have been developed to investigate the effect of fluid flow on the dendritic growth of pure materials. But up to date, only a few researches were carried out on the effect of fluid flow on the dendritic growth of alloys. The effect of fluid flow on three dimensional (3D) dendrite tip selection parameter of alloys remains an unsolved scientific problem. A 3D cellular automaton (CA) model for dendritic growth of alloys was developed in this paper. 3D CA is solved in coupling with a momentum transport model in order to predict the evolution of dendritic morphology during solidification of alloys in the presence of flow. The dendrite growth with a forced flow in an undercooled melt of an Al-4%Cu (mass fraction) alloy was simulated. The effect of forced flow on dendritic growth was investigated. The results show that a forced flow affect the three dimensional dendritic growth of an alloy significantly. The growth of the primary and secondary arm in the upstream direction is much greater than that in the downstream direction. The growth direction of the primary arm perpendicular to the flow direction tilted into the upstream direction. The dendrite tip of the primary arm perpendicular to the flow direction shows an asymmetric morphology. The degree of the tilt and the asymmetry of the tip become stronger with the increase of the forced flow velocity. With the increase of the flow velocity the growth velocity of the upstream dendrite tip increases, the radius and the selection parameter of the upstream dendrite tip decrease. For a given undercooling, the effect of forced flow on the selection parameter of the upstream dendrite tip becomes stronger with the increase of the anisotropy of the interfacial energy. For a given  alloy, the effect of forced flow on the selection parameter of the upstream dendrite tip also becomes stronger with the increase of undercooling.
Key wordsAl-Cu alloy    3D dendritic growth    forced flow    cellular automaton
收稿日期: 2012-02-13     
ZTFLH: 

TG111.4

 
基金资助:

国家自然科学基金项目51071159, 51031003和 u0837601资助r

作者简介: 张显飞, 男, 1976年生, 博士生
[1] Langer J S, Muller-Krumbhaar H.  Acta Metall Mater, 1978; 26: 1681

[2] Bouissou P, Pelce P.  Phys Rev, 1989; 40A: 6673

[3] Dash S K, Gill W N.  Int J Heat Mass Transfer, 1984; 27: 1345

[4] Bouissou P, Perrin B, Tabeling P.  Phys Rev, 1989; 40A: 509

[5] Lee Y W, Ananth R, Gill W N.  J Cryst Growth, 1993; 132: 226

[6] Tong X, Beckermann C, Karma A.  Phys Rev, 2000; 61E: R49

[7] Tong X, Beckermann C, Karma A, Li Q.  Phys Rev, 2001; 63E: 061601

[8] Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X. J Comput Phys, 1999; 154: 468

[9] Tonhardt R, Amberg G.  J Cryst Growth, 2000; 213: 161

[10] Tonhardt R, Amberg G.  Phys Rev, 2000; 62E: 828

[11] Tonhardt R, Amberg G.  J Cryst Growth, 1998; 194: 406

[12] Jeong J H, Goldenfeld N, Dantzig J A.  Phys Rev, 2001; 64E: 041602

[13] Jeong J H, Dantzig J A. Goldenfeld N.  Metall Mater Trans,2003; 34A: 459

[14] Chen C C, Tsai Y L, Lan C W.  Int J Heat Mass Transfer, 2009; 52: 1158

[15] Chen C C, Lan C W.  J Cryst Growth, 2010; 312: 1437

[16] Lu Y, Beckermann C, Ramirez J C.  J Cryst Growth, 2005; 280: 320

[17] Zhu M F, Lee S Y, Hong C P.  Phy Rev, 2004; 69E: 061610

[18] Sun D K, Zhu M F, Pan S Y, Raabe D.  Acta Mater, 2009; 57: 1755

[19] Yuan L, Lee P D.  Modell Simul Mater Sci Eng, 2010; 18: 055008

[20] Shi Y F, Xu Q Y, Liu B C.  Acta Phys Sin, 2011; 60: 126101

     (石玉峰, 许庆彦, 柳百成. 物理学报, 2011; 60: 126101)

[21] Gurevich S, Karma A, Plapp M, Trivedi R.  Phys Rev, 2010; 81E: 011603

[22] Nastac L.  Acta Mater, 1999; 47: 4253

[23] Beltran-Sanchez L, Stefanescu D M.  Metall Mater Trans,2004; 35A: 2471

[24] Zhang X F, Zhao J Z, Jiang H X, Zhu M F.  Acta Mater, 2012; 60: 2249

[25] Lipton J, Glicksman M E, Kurz W.  Mater Sci Eng, 1984; 65: 57

[26] Pan S Y, Zhu M F.  Acta Mater, 2010; 58: 340
[1] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[2] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[3] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[4] 魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
[5] 王富鑫, 骆良顺, 王亮, 张东徽, 李新中, 苏彦庆, 郭景杰, 傅恒志. 合金成分和冷却速率对Al-Cu合金凝固过程中初生Al2Cu相生长形貌的影响*[J]. 金属学报, 2016, 52(3): 361-368.
[6] 朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 合金凝固过程中显微组织演化的元胞自动机模拟*[J]. 金属学报, 2016, 52(10): 1297-1310.
[7] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[8] 张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟*[J]. 金属学报, 2015, 51(2): 148-158.
[9] 赵九洲, 李璐, 张显飞. 合金凝固过程元胞自动机模型及模拟方法的发展*[J]. 金属学报, 2014, 50(6): 641-651.
[10] 张航, 许庆彦, 史振学, 柳百成. DD6高温合金定向凝固枝晶生长的数值模拟研究*[J]. 金属学报, 2014, 50(3): 345-354.
[11] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[12] 李正扬,朱鸣芳,戴挺. Al-7%Si合金显微气孔形成的模拟研究[J]. 金属学报, 2013, 49(9): 1032-1040.
[13] 石玉峰 许庆彦 柳百成. 定向凝固共晶生长的元胞自动机数值模拟[J]. 金属学报, 2012, 48(1): 41-48.
[14] 赵九洲 江鸿翔. 枝晶生长的三维元胞自动机模拟[J]. 金属学报, 2011, 47(9): 1099-1104.
[15] 石玉峰 许庆彦 龚铭 柳百成. 定向凝固过程中NH4Cl-H2O枝晶生长的数值模拟[J]. 金属学报, 2011, 47(5): 620-627.