Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 759-768    DOI: 10.3724/SP.J.1037.2012.00024
  论文 本期目录 | 过刊浏览 |
梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究
于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
STUDY OF OXIDATION BEHAVIOR OF THE GRADIENT NiCrAlY COATING AT 1000 AND 1100 ℃
YU Daqian, LU Xuyang, MA Jun, JIANG Sumeng, LIU Shanchuan, GONG Jun, SUN Chao
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48(6): 759-768.
, , , , , , . STUDY OF OXIDATION BEHAVIOR OF THE GRADIENT NiCrAlY COATING AT 1000 AND 1100 ℃[J]. Acta Metall Sin, 2012, 48(6): 759-768.

全文: PDF(5075 KB)  
摘要: 采用电弧离子镀技术及后续热处理工艺在镍基高温合金上制备了均匀NiCrAlY涂层和梯度NiCrAlY涂层, 分析了2种涂层的组织结构, 对比研究了2种涂层静态空气下1000和1100 ℃恒温氧化行为以及1100 ℃的循环氧化行为. 结果表明: 均匀NiCrAlY涂层由γ'/γ相和少量β-NiAl相、α-Cr相组成, 成分分布均匀;梯度NiCrAlY涂层具有外层富Al和内层富Cr的结构, 其中外层由β-NiAl相和少量γ'/γ相、α-Cr相组成. 一方面, 梯度涂层的初始Al含量较高;另一方面, 氧化过程中其富Cr区两侧出现了对富Al区的Al向基体扩散起阻碍作用的Cr(W)析出带.这两方面使梯度涂层长时间维持更多的Al存储相, 提升了氧化膜的迅速生成及再生成能力,从而使涂层具有较好的抗氧化性能.
关键词 电弧离子镀梯度涂层高温氧化    
AbstractMCrAlY(M=Ni and/or Co) overlay coatings are wildly adopted on hot components in gas turbine engines to protect them from rapid oxidation. Various methods can be applied to prepare MCrAlY overlay coatings, which formed by the arc ion plating method possess outstanding properties in terms of interfacial strength, porosity and componential distribution, and thus excellent oxidation properties. To increase the Al content is deemed an economical and effective solution for enhancing the service performance and life for MCrAlY coatings at elevated temperature because the degradation process relies greatly on the ceaseless forming and spallation process of the protective α-Al2O3 scales during high-temperature oxidation. However, high content of Al will lower the melting point and decrease the ductility of the coating. This phenomenon can be partly resolved through a gradient coating design. In this paper, a conventional NiCrAlY coating and a gradient NiCrAlY coating have been prepared by the combined method of arc ion plating and subsequent diffusion treatment on Ni--base superalloy substrate. The microstructures, morphologies, isothermal oxidation behavior at 1000 and 1100 ℃ and cyclic oxidation behavior at 1100 ℃ have been investigated on the two kinds of the coatings. The results have revealed that the conventional NiCrAlY coating with uniform components is composed of γ'/γ phase, β-NiAl phase and some α-Cr precipitate phase. While the gradient NiCrAlY coating have showed layered microstructure, i.e., an Al-enriched outer layer and a Cr-enriched inner layer, primarily consists of β-NiAl phase, γ'/γ phase and some α-Cr precipitate phase in the outer layer. During the oxidation, it is evident that the vanishment of β-NiAl phase and the enlargement of γ'/γ phase for both the coatings. Nevertheless, the gradient coating has maintained higher Al content during long-term oxidation due to the massive β-NiAl phase obtained in the outer layer after vacuum annealing and the Cr(W) zones precipitated beside the Cr--enriched inner layer during the oxidation. Adequateβ-NiAl phase, as reservoir phase of Al, directly delay the process of Al depletion; Cr(W) zones, to a certain extent, slow down the degradation by hindering the diffusion of Al from the gradient coating to the substrate. As a result, the ability of forming and healing the protective α-Al2O3 scales in the gradient coating have been enhanced, which has eventually improved the high-temperature oxidation properties.
Key wordsarc ion plating    gradient coating    high temperature oxidation
收稿日期: 2012-01-10     
基金资助:

国家自然科学基金项目51001106和国家重点基础研究发展计划项目2012CB625102资助

作者简介: 于大千, 男, 1985年生, 硕士生
[1] Jeanine T D, Dinesh K G.  Surf Coat Technol, 1994; 68--69: 1

[2] Goward G W.  Surf Coat Technol, 1998; 108--109: 73

[3] Czech N, Schmitz F, Stamm W.  Mater Manuf Processes, 1995; 10: 1021

[4] Brandl W, Grabke H J, Toma D, Kruger J. Surf Coat Technol, 1996; 86--87: 41

[5] Nicholls J R, Simms N J, Chan W, Evans H E.  Surf Coat Technol,2002; 149: 236

[6] Ma J, Jiang S M, Li H Q, Wang W X, Gong J, Sun C.  Corros Sci,2011; 53: 1417

[7] Tang F, Ajdelsztajn L, Schoenung J M.  Oxid Met, 2004; 61: 219

[8] Wood J H, Swede S T.  Surf Coat Technol, 1993; 61: 1

[9] Guo M H, Wang Q M, Gong J, Sun C, Wen L S.  Surf Coat Technol,2006; 201: 1302

[10] Guo M H, Wang Q M, Gong J, Sun C, Huang R F, Wen L S. Corros Sci, 2006; 48: 2750

[11] Peng X, Jiang S M, Duan X H, Gong J, Sun C.  Acta Metall Sin,2009; 45: 378

     (彭新, 姜肃猛, 段绪海, 宫骏, 孙超. 金属学报. 2009; 45: 378)

[12] Wang W X, Jiang S M, Wei G Z, Ma J, Gong J, Sun C.  Acta Metall Sin,2011; 47: 578

     (王维新, 姜肃猛, 卫广智, 马军, 宫骏, 孙超.金属学报. 2011; 47: 578)

[13] Jiang S M, Xu C Z, Li H Q, Ma J, Gong J, Sun C.  Corros Sci,2010; 52: 1746

[14] Lou H Y, Wang F H.  Vacuum, 1992; 43: 757

[15] Sun C, Wang Q M, Tang Y J, Guan Q F, Gong J, Wen L S. Acta Metall Sin, 2005; 41: 1167

     (孙超, 王启民, 唐永吉, 关庆丰, 宫骏, 闻立时. 金属学报,2005; 41: 1167)

[16] Xu C Z, Jiang S M, Ma J, Gong J, Sun C.  Acta Metall Sin,2009; 45: 964

     (徐朝政, 姜肃猛, 马军, 宫骏, 孙超. 金属学报. 2009; 45: 964)

[17] Birks N, Meier G H, Pettit F S.  Introduction to the High-Temperature Oxidation of Metals. 2nd ed, Cambridge: Cambridge University Press, 2006: 123

[18] Lee E Y, Chartier D M, Biederman R R, Sisson Jr R D. Surf Coat Technol, 1987; 32: 19

[19] Doychak J. In: Westbrook J H, Fleischer R L, eds.,  Intermetallic Compounds, New York: John Wiley & Sons Ltd., 1994: 977

[20] Li M S.  High Temperature Corrosion of Materials.Beijing: Metallurgical Industry Press, 2001: 183

     (李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 183)

[21] Hagel W C.  Corrosion, 1965; 21: 316

[22] Rhysjones T N.  Corros Sci, 1989; 29: 623

[23] Knotek O, Loffler F, Beele W.  Surf Coat Technol, 1993; 61: 6

[24] Brandl W, Toma D, Kruger J, Grabke H J, Matthaus G. Surf Coat Technol, 1997; 94: 21

[25] Rhys--Jones T N.  Corros Sci, 1989; 29: 623

[26] Morral J E, Thompson M S.  Surf Coat Technol, 1990; 43-44: 371

[27] Knotek O, Lugscheider E, Lofffler F, Beele W. Surf Coat Technol, 1993; 61: 6

[28] Birks N, Meier G H, Pettit F S.  Introduction to the High-Temperature Oxidation of Metals. 2nd ed., Cambridge: Cambridge University Press, 2006: 133
[1] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 刘冠熙, 黄光宏, 罗学昆, 申造宇, 何利民, 李建平, 牟仁德. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57(5): 684-692.
[6] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[7] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[8] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[9] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[10] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[11] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[12] 曾宇翔,郭喜平,乔彦强,聂仲毅. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51(9): 1049-1058.
[13] 吴多利, 姜肃猛, 范其香, 宫骏, 孙超. 镍基高温合金Al-Cr涂层的恒温氧化行为*[J]. 金属学报, 2014, 50(10): 1170-1178.
[14] 骆蕾,沈以赴,李博, 胡伟叶. 搅拌摩擦焊搭接法制备TC4钛合金表面Al涂层及其高温氧化行为[J]. 金属学报, 2013, 49(8): 996-1002.
[15] 常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超. 电弧离子镀沉积磁性薄膜的研究[J]. 金属学报, 2012, 48(5): 547-554.