Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 717-724    DOI: 10.3724/SP.J.1037.2012.00019
  论文 本期目录 | 过刊浏览 |
轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响
罗晋如1,刘庆2,刘伟1,Godfrey Andrew1
1. 清华大学材料科学与工程系先进材料教育部重点实验室, 北京 100084
2. 重庆大学材料科学与工程学院, 重庆 400044
INFLUENCE OF ROLLING TEMPERATURE ON THE {1011}-{1012} TWINNING IN ROLLED AZ31 MAGNESIUM ALLOY SHEETS
LUO Jinru1, LIU Qing2, LIU Wei1, Godfrey Andrew1
1. Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University,Beijing 100084
2. School of Materials Science and Engineering, Chongqing University, Chongqing 400044
全文: PDF(5691 KB)  
摘要: 在150-350 ℃温区内不同温度下轧制AZ31镁合金板, 观察了不同温度下轧制变形量为9%的AZ31镁合金板材的显微组织, 研究分析了轧制温度对轧制板材中{1011}-{1012} 双孪晶的含量、类型以及高温轧制过程中双孪晶中的动态再结晶行为的影响, 讨论了板材中的孪晶对其力学性能的影响. 研究结果表明: 在150-300 ℃温区内轧制时,板材组织中均有含量不等的{1011}-{1012} 双孪晶,随着轧制温度的升高, 孪晶含量下降. 250 ℃以上轧制的板材中单片一次孪晶中出现的双孪晶类型较为单一, 仅出现共面型双孪晶.在250 ℃以上轧制板材中的双孪晶晶界处中可以观察到明显的动态再结晶现象, 这些动态再结晶晶粒对孪晶界和孪晶起到消除和吞噬的作用. 350 ℃下轧制的AZ31镁合金板材中未观察到{1011}-{1012双孪晶. 随着轧制温度的升高,镁合金轧制板材的强度减弱而塑性增强.
关键词 AZ31镁合金轧制温度{1011-{1012双孪晶再结晶    
Abstract:The most common manufacturing process for wrought magnesium alloy sheet is warm--rolling and the microstructure and properties of the product are strongly related with the rolling temperature. In particular, {1011}-{1012} double twinning is an important supplemental mechanism for the deformation of magnesium alloys during rolling at low or moderate temperatures. Therefore, the present work studies the microstructural variation of magnesium alloy sheets AZ31 rolled to 9% at different temperatures in the range of 150-350 ℃, and discusses the influence of rolling temperature on the quantity and variety of {1011}-{1012} double twins, as well as recrystallization related to the double twins. The mechanical properties of the rolled sheets and the influences of twins on the mechanical properties have also been discussed. The results show that {1011}-{1012} double twins are observed in the sheets rolled at temperature ranging from 150 to 300 ℃. The fraction of double twin per unit area, and the number of variant types within each primary twin, decreases with the increasing rolling temperature. At the temperature above 250 ℃, only co--planar double twins are observed in each primary twin. Recrystallized grains are observed to nucleate at the twin boundaries in the sheets rolled above 250 ℃, these can consume the twin boundaries and resulting in merging of the twin grains. No {1011}-{1012} twins are found in the AZ31 magnesium alloy sheet rolled at 350 ℃. With the increase of rolling temperature, the yield strength decreases and the ductile elongation increase for the rolled magnesium alloy sheet.
Key wordsAZ31 Mg alloy    rolling temperature    {1011}-{1012} double twin    recrystallization
收稿日期: 2012-01-09      出版日期: 2012-06-11
ZTFLH:  TG335.12  
基金资助:

国家重点基础研究发展计划资助项目2007CB613703

通讯作者: 刘庆     E-mail: qingliu@cqu.edu.cn
Corresponding author: Qing LIU     E-mail: qingliu@cqu.edu.cn
作者简介: 罗晋如, 女, 1984年生, 博士生

引用本文:

罗晋如,刘庆,刘伟,Godfrey Andrew. 轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响[J]. 金属学报, 2012, 48(6): 717-724.
LUO Jinru, LIU Qing, LIU Wei, Godfrey Andrew. INFLUENCE OF ROLLING TEMPERATURE ON THE {1011}-{1012} TWINNING IN ROLLED AZ31 MAGNESIUM ALLOY SHEETS. Acta Metall Sin, 2012, 48(6): 717-724.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00019      或      http://www.ams.org.cn/CN/Y2012/V48/I6/717

[1] Maksoud I A, Ahmed H, Rodel J. Mater Sci Eng, 2009; A504: 40
[2] Jain A, Agnew S R. Mater Sci Eng, 2007; A462: 29
[3] Watanabe H, Mukai T, Ishikawa K. J Mater Process Technol,2007; 182: 644
[4] Cho J, Kim H, Kang S, Han T. Acta Mater, 2011; 59: 5638
[5] Ji Y H, Park J J. Mater Sci Eng, 2008; A485: 299
[6] Bruni C, Forcellese A, Gabrielli F, Simoncini M. J Mater Process Technol, 2010; 210: 1354
[7] Miao Q, Hu L, Wang G, Wang E. Mater Sci Eng, 2011; A528: 6694
[8] Thirumurugan M, Kumaran S, Suwas S, Srinivasa R T. Mater Sci Eng, 2011; 528: 8460
[9] Beausir B, Biswas S, Kim D I, Toth L S, Suwas S. Acta Mater, 2009; 57: 5061
[10] Perez--Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661
[11] Liu Q. Acta Metall Sin, 2010; 46: 1458 (刘庆. 金属学报, 2010; 46: 1458)
[12] Chapuis A, Driver J H. Acta Mater, 2011; 59: 1986
[13] Hutchinson W B, Barnett M R. Scr Mater, 2010; 63: 737
[14] Yoshinaga H, Obara T, Morozumi S. Mater Sci Eng, 1973; 12: 255
[15] Luo J R, Liu Q, Liu W, Godfrey A. Acta Metall Sin, 2011; 47: 1567 (罗晋如, 刘庆, 刘伟, Godfrey A. 金属学报, 2011; 47: 1567)
[16] Yang X Y, Jiang Y P. Acta Metall Sin, 2010; 46: 451 (杨续跃, 姜育培. 金属学报, 2010; 46: 451)
[17] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 205
[18] Reed--Hill R E. Trans Metall Soc AIME, 1960; 28: 554
[19] Reed--Hill R E, Robertson W D. Acta Metall, 1957; 5: 717
[20] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 205
[21] Ando D, Koike J, Sutu Y. Acta Mater, 2010; 58: 4316
[22] Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096 (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)
[23] Luo J R, Chen X P, Xin R L, Huang G J, Liu Q. Trans Nonferrous Met Soc Chin, 2008; 18: s194
[24] Martin E, Jonas J J. Acta Mater, 2010; 58: 4253
[25] Yang X Y, Sun Z Y, Zhang L. Acta Metall Sin, 2010; 46: 607 (杨续跃, 孙争艳, 张雷. 金属学报, 2010; 46: 607)
[26] Li X, Yang P, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 147 (李萧, 杨平, 孟利, 崔凤娥. 金属学报, 2010; 46: 147)
[27] Luo J R, Godfrey A, Liu W, Liu Q. Acta Mater, 2011; 60: 1986
[28] Martin E, Capolungo L, Jiang L, Jonas J J. Acta Mater, 2010; 58: 3970
[29] Barnett M R, Keshavarz Z, Beer A G, Ma X. Acta Mater, 2008; 56: 5
[30] Kim K H, Suh B C, Bae J H, Shim M S, Kim S, Kim N J. Scr Mater,2010; 63: 716
[31] Sandlobes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R. Acta Mater, 2011; 59: 429
[32] Yang P, Mao W M, Ren X P, Tang Q B. Trans Nonferrous Met Soc Chin,2004; 14: 851
[33] Ion S E, Humphreys F J, White S H. Acta Metall, 1982; 30: 1909
[34] Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Mater Sci Eng,2002; A337: 121
[35] Ma Q, Li B, Marin E B, Horstemeyer S J. Scr Mater, 2011; 65: 823
[36] Ando D, Koike J, Sutou Y. Acta Mater, 2010; 58: 4316
[37] Hartt W H, Reed--Hill R E. Trans Metall Soc AIME, 1967; 239: 1511
[38] Ma Q, Kadiri H E, Oppedal A L, Baird J C, Horstemeyer M F, Cherkaoui M. Scr Mater, 2011; 64: 813
[39] Luo J R, Godfrey A, Liu W, Liu Q. Acta Mater, 2012; 60: 1986
[40] Mahajan S, Chin G Y. Acta Metall, 1973; 21: 173
[41] Mahajan S, Chin G Y. Acta Metall, 1974; 22: 1113
[1] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[2] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[3] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[4] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[5] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[6] 何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
[7] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[8] 张京,郑运荣,冯强. 基于蠕变损伤的定向凝固DZ125合金恢复热处理研究*[J]. 金属学报, 2016, 52(6): 717-726.
[9] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[10] 高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.
[11] 陈吉湘,王卫国,林燕,林琛,王乾廷,戴品强. 等径角挤压和单向轧制高纯Al再结晶晶界面的取向分布*[J]. 金属学报, 2016, 52(4): 473-483.
[12] 张笃秀, 李祎, 叶友雄, 沈阳志, 杨续跃. 微量Fe对冷轧超细晶Cu-30Zn-0.15Fe合金等温退火组织演化的影响*[J]. 金属学报, 2016, 52(3): 369-377.
[13] 莫远科,张志豪,谢建新,潘洪江. 再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响*[J]. 金属学报, 2016, 52(11): 1363-1371.
[14] 刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
[15] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.