Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 951-956    DOI: 10.3724/SP.J.1037.2011.00792
  论文 本期目录 | 过刊浏览 |
行波磁场下吹Ar过程中结晶器内气泡行为的研究
陈芝会,王恩刚,张兴武,王元华,朱明伟,赫冀成
东北大学材料电磁过程研究教育部重点实验室, 沈阳  110819
STUDY ON THE BEHAVIOUR OF BUBBLES IN A CONTINUOUS CASTING MOLD WITH Ar INJECTION AND TRAVELING MAGNETIC FIELD
CHEN Zhihui, WANG Engang, ZHANG Xingwu,WANG Yuanhua, ZHU Mingwei, HE Jicheng
Key Laboratory National Education Ministry for Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819
引用本文:

陈芝会 王恩刚 张兴武 王元华 朱明伟 赫冀成. 行波磁场下吹Ar过程中结晶器内气泡行为的研究[J]. 金属学报, 2012, 48(8): 951-956.
, , , , , . STUDY ON THE BEHAVIOUR OF BUBBLES IN A CONTINUOUS CASTING MOLD WITH Ar INJECTION AND TRAVELING MAGNETIC FIELD[J]. Acta Metall Sin, 2012, 48(8): 951-956.

全文: PDF(1030 KB)  
摘要: 采用Pb-Sn-Bi合金进行模拟实验, 研究了吹Ar过程中施加低频行波磁场时结晶器内气泡的运动和分布. 用电阻探针法测量了结晶器内金属液面下及液相深处的气泡分布, 考察了磁感应强度、拉速和吹气量对结晶器内气泡运动、数量和分布的影响. 结果表明, 吹气量和拉速的增加使结晶器窄面附近的气泡数量增多;施加行波磁场使液相深处窄面附近的气泡数量减少, 减少了气泡被凝固坯壳捕获的可能性,并且抑制了高浇速时沿结晶器宽度方向气泡上浮不均匀的现象, 可避免局部气泡上浮数量过多而对液面扰动过大. 通过对大气泡分布规律的研究发现施加行波磁场使气泡聚合现象增强, 促进了气泡的上浮, 且当磁感应强度增加到0.12 T时大气泡在结晶器宽度方向上浮更均匀.
关键词 模拟实验 连铸结晶器低频行波磁场气泡分布 电阻探针    
Abstract:Steel flow control in a continuous slab caster mold is effective for preventing entrapments of both mold power and argon gas bubbles and maintaining high slab quality. The steel flow control technology that utilizes a traveling magnetic field to optimize the flow of steel in the mold has been developed and applied. The moving magnetic fields can induce accelerating flow (electromagnetic level accelerator, EMLA), decelerating flow (electromagnetic level stabilizer, EMLS) and rotating flow (electromagnetic rotary stirring, EMRS) according the travel direction of the fields. EMLS mode applies a low frequency alternating magnetic field that moves from the narrow face of the mold to the mold center below the nozzle exits. In this study, the model experiments were carried out using liquid alloy of Pb–Sn–Bi and argon gas to study the two–phase fluid flow in the mold with a low frequency traveling magnetic field. The resistance probe was applied to measure the distribution of gas bubbles below the liquid surface and in the deeper liquid phase in the mold. The effect of various parameters such as magnetic flux density, casting speed and argon gas flow rate on the movement and distribution of argon gas bubbles in the mold was studied. The results indicate that the quantity of gas bubbles near the narrow face increases with increasing argon gas flow rate and casting speed. With imposed traveling magnetic field, the quantity of gas bubbles near narrow face at deep position in the pool was decreased, so the possibility that gas bubbles were entrapped into the solidification shell of the steel can be decreased, and the asymmetrical floating of bubbles along the width of mold for a higher casting speed was depressed, so higher disturbances at the free surface in the mold caused by excessive floating of gas bubbles locally can be avoided. The investigations on the floating of big bubbles revealed that the coalescence and flotation of bubbles can be enhanced with imposed traveling magnetic field, and the floating of big bubbles along the width of mold get more uniformity at 0.12 T.
Key wordsmodel experiment    continuous casting mold     low frequency traveling magnetic field    resistance probe    bubbles distribution
收稿日期: 2011-12-19     
基金资助:

国家自然科学基金项目50834009, 辽宁省高校创新团队计划项目LT2010035和中央高校基本科研业务费专项资金项目N110609001资助

作者简介: 陈芝会, 女, 1960年生, 副教授
[1] Thomas B G, Zhang L. ISIJ Int, 2001; 41: 1181

[2] Zhang L F, Yang S B, Cai K K, Li J Y, Wan X G, Thomas B G. Metall Mater Trans, 2007; 38B: 63

[3] Singh V, Dash S K, Sunitha J S, Ajmani S K, Das A K. ISIJ Int, 2006; 46: 210

[4] Cukierski K, Thomas B G. Metall Mater Trans, 2008; 39B: 94

[5] Garcia–Hernandez S, Morales R D, Torres–Alonso E. Ironmaking Steelmaking, 2010; 37: 360

[6] Timmel K, Eckert S, Gerbeth G. Metall Mater Trans, 2011; 42B: 68

[7] Yu H Q, Zu M Y. ISIJ Int, 2008; 48: 584

[8] Kunstreich S, Dauby P H. Ironmaking Steelmaking, 2005; 32: 80

[9] Kubo N, Kubota J, Suzuki M, Ishii T. ISIJ Int, 2007; 47: 988

[10] Miki Y, Takeuchi S. ISIJ Int, 2003; 43: 1548

[11] Kwon Y, Zhang J, Lee H G. ISIJ Int, 2006; 46: 257

[12] Yamashita S, Iguchi M. ISIJ Int, 2001; 41: 1529

[13] Takatani K, Tanizawa Y, Mizukami H, Nishimura K. ISIJ Int, 2001; 41: 1252

[14] Zhang S J, Zhu M Y, Zhang Y L, Zheng S G, Cheng N L, Song J X. Acta Metall Sin, 2006; 42: 1087

(张胜军, 朱苗勇, 张永亮, 郑书国, 程乃良, 宋景欣. 金属学报, 2006; 42: 1087)

[15] Cao N, Zhu M Y. Acta Metall Sin, 2008; 44: 79

(曹娜, 朱苗勇. 金属学报, 2008; 44: 79)

[16] Wang Y F, Dong A P, Zhang L F. Steel Res Int, 2011; 82: 428

[17] Lei Z S, Zhang H B, Ren Z M, Deng K, Zhong Y B. 6th Int Conf on Electromagnetic Processing of Materials, Dresden, Germany: Forschungszentrum Dresden–Rossendrof, 2009: 575

[18] Yu H Q, Zhu M Y. Acta Metall Sin, 2008; 44: 619

(于海岐, 朱苗勇. 金属学报, 2008; 44: 619)

[19] Yavuz M M. Steel Res Int, 2011; 82: 809

[20] Yu Z, Zhang Z Q, Ren Z M, Lei Z S, Deng K. Acta Metall Sin, 2010; 46: 1275

(于湛, 张振强, 任忠鸣, 雷作胜, 邓康. 金属学报, 2010; 46: 1275)

[21] Kubo N, Ishii T, Kubota J, Ikagawa T. ISIJ Int, 2004; 44: 556

[22] Kubota J, Kubo N, Ishii T, Suzuki M, Aramaki N, Nishimachi R. NKK Technol Rev, 2001; 85: 1

[23] Toh H, Hasegawa H, Harada H. ISIJ Int, 2001; 41: 1245

[24] Wang X D, Fautrelle Y, Etay J, Moreau R. Metall Mater Trans, 2009; 40B: 82

[25] Wang H D, Zhu M Y, Yu H Q. J Iron Steel Res Int, 2010; 17: 25

[26] Wang T F, Wang J F, Yang W G, Jin Y. J Chem Eng, 2001; 52: 197

(王铁峰, 王金福, 杨卫国, 金涌. 化工学报, 2001; 52: 197)
[1] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[2] 刘中秋,李宝宽,姜茂发,张立,徐国栋. 连铸结晶器内氩气/钢液两相非稳态湍流特性的大涡模拟研究[J]. 金属学报, 2013, 49(5): 513-522.
[3] 李宝宽 刘中秋 齐凤升 王芳 徐国栋. 薄板坯连铸结晶器非稳态湍流大涡模拟研究[J]. 金属学报, 2012, 48(1): 23-32.
[4] 许秀杰 邓安元 王恩刚 张林涛 张兴武 张永杰 赫冀成. 电磁软接触连铸圆坯表面振痕演变机理[J]. 金属学报, 2009, 45(4): 464-469.
[5] 孟祥宁 朱苗勇. 高拉速板坯连铸结晶器液态渣消耗机理分析[J]. 金属学报, 2009, 45(4): 485-489.
[6] 贾洪海; 于湛; 雷作胜; 邓康; 陈家昶; 华文杰; 任忠鸣 . 旋流水口对小方坯连铸结晶器流场影响的水模拟研究[J]. 金属学报, 2008, 44(3): 375-380 .
[7] 孟祥宁; 朱苗勇 . 高拉速板坯连铸结晶器液体摩擦机理分析[J]. 金属学报, 2008, 44(10): 1193-1197 .
[8] 孟祥宁; 朱苗勇; 程乃良 . 高拉速下连铸坯振痕形成机理及振动参数优化[J]. 金属学报, 2007, 43(8): 839-846 .
[9] 孟祥宁; 朱苗勇; 刘旭东; 程乃良; 江中块 . 高拉速连铸结晶器非正弦振动因子研究[J]. 金属学报, 2007, 43(2): 205-210 .
[10] 郭亮亮; 姚曼; 尹合壁; 王旭东; 方大成; 刘晓 ; 于艳 . 连铸圆坯结晶器的热流计算与讨论[J]. 金属学报, 2006, 42(9): 983-988 .
[11] 张胜军; 朱苗勇; 张永亮; 郑淑国; 程乃良; 宋景欣 . 高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J]. 金属学报, 2006, 42(10): 1087-1090 .
[12] 尹合壁; 姚曼 . 圆坯连铸结晶器传热的反算法[J]. 金属学报, 2005, 41(6): 638-644 .
[13] 钱忠东; 吴玉林 . 连铸结晶器内钢液涡流现象的大涡模拟及控制[J]. 金属学报, 2004, 40(1): 88-93 .
[14] 黄军涛; 赫冀成 . 方坯结晶器内钢液凝固及电磁制动的数值模拟[J]. 金属学报, 2001, 37(3): 281-286 .
[15] 李宝宽;赫冀成;贾光霖;高允彦. 薄板坯连铸结晶器内钢液流场电磁制动的模拟研究[J]. 金属学报, 1997, 33(11): 1207-1214.