Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 983-988    DOI: 10.3724/SP.J.1037.2011.00748
  论文 本期目录 | 过刊浏览 |
打底层对铝合金表面GLC镀层组织和摩擦学特性的影响
时惠英,龙艳妮,蒋百灵,陈迪春
西安理工大学材料科学与工程学院, 西安 710048
EFFECT OF SUBLAYER ON THE STRUCTURES AND TRIBOLOGICAL PROPERTIES OF GLC COATING ON Al–BASED ALLOY
SHI Huiying, LONG Yanni, JIANG Bailing, CHEN Dichun
School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048
全文: PDF(2268 KB)  
摘要: 采用非平衡磁控溅射离子镀技术在铝合金表面分别制备了以Cr和Al为打底层,Cr-C和Al-Cr-C为过渡层的Cr/Cr-C/类石墨碳(GLC)和Al/Al-Cr-C/GLC复合镀层, 并与无打底层制备GLC镀层对比, 系统研究了不同镀层微观结构、膜基结合力及摩擦学性能. 结果表明, 铝合金基体表面Cr打底层呈柱状晶生长, Cr/C过渡层无柱状晶特征,且随过渡层增厚, 富Cr区域减少, 实现了成分的梯度变化;  Al打底层与铝合金基体间为一个整体, 没有明显界面; Al-Cr-C过渡层的成分也呈梯度变化; 采用不同打底层和过渡层时, GLC层均为非晶态结构. 较无打底层制备GLC镀层, Cr/Cr-C/GLC和Al/Al-Cr-C/GLC复合镀层与铝合金基底间的膜基结合力显著增强, 以Al为打底层的复合镀层的失效临界载荷最大. 磨损实验中, 在不同载荷条件下2种复合镀层均具有低的摩擦系数.
关键词 非平衡磁控溅射离子镀 GLC镀层 微观结构 结合力 摩擦学性能    
Abstract:Graphite–like carbon (GLC) film is a kind of antifriction coating. Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings were prepared by using an unbalanced magnetron sputtering system on Al–based alloy, where Al and Cr layer are the sublayers, Cr–C and Al–Cr–C are the transition layers. As a comparation, the GLC coating without sublayer was also deposited on the substrate. The microstructure, binding force and tribological properties of as–deposited coatings were studied. The results show that the Cr sublayer shows a columnar growth structure, while the columnar grain is not found in the Cr–C transition layer which has a gradient composition distribution. There is a good combining interface between Al sublayer and Al–based alloy substrate. Al–Cr–C transition layer has a gradient composition distribution also. GLC layers based on different sublayers and transition layers have amorphous structures. Compared with GLC coating without sublayer, the binding forces of Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings are obviously higher, and the Al/Al–Cr–C/GLC composite coating has the maximum critical load. Under different loading conditions, the friction coefficients of both Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings are low and similar to each other.
Key wordsunbalanced magnetron sputtering    GLC film    microstructure    binding force    tribological property
收稿日期: 2011-12-05      出版日期: 2012-08-11
ZTFLH:  TG146.2  
基金资助:

国家重点基础研究发展计划资助项目2009CB724406

通讯作者: 时惠英     E-mail: hy–shi@163.com
作者简介: 时惠英, 女, 1959年生, 副教授

引用本文:

时惠英 龙艳妮 蒋百灵 陈迪春. 打底层对铝合金表面GLC镀层组织和摩擦学特性的影响[J]. 金属学报, 2012, 48(8): 983-988.
SHI Huiying LONG Yanni JIANG Bailing CHEN Dichun. EFFECT OF SUBLAYER ON THE STRUCTURES AND TRIBOLOGICAL PROPERTIES OF GLC COATING ON Al–BASED ALLOY. Acta Metall Sin, 2012, 48(8): 983-988.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00748      或      http://www.ams.org.cn/CN/Y2012/V48/I8/983

[1] Wei T, Yan F, Tian J. J Alloys Compd, 2005; 389: 169
[2] Sun X, Jiang Z, Xin S, Yao Z. Thin Solid Films, 2005; 471: 194
[3] Akarca S S, Altenhof W J, Alpas A T. Tribol Int, 2007; 40: 735
[4] Wu J J. Foundry Technol, 2002; 23: 273
(吴浚郊. 铸造技术, 2002; 23: 273)
[5] Xue W B, Shi X L, Hua M, Li Y L. Appl Surf Sci, 2007; 253: 6118
[6] Donnet C, Erdemir A. Surf Coat Technol, 2004; 180: 76
[7] Xu B S, Zhu S H, Liu S S. Materials Surface Engineering. Harbin: Harbin Institute of Technology Press, 2005: 1
(徐滨士, 朱绍华, 刘世参. 材料表面工程. 哈尔滨 : 哈尔滨工业大学出版社, 2005: 1)
[8] Zhou F, Wang Y, Ding H Y, Wang M L, Yu M, Dai Z D. Surf Coat Technol, 2008; 202: 3808
[9] Zhu M H, Cai Z B, Lin X Z, Ren P D, Tan J, Zhou Z R. Wear, 2007; 263: 472
[10]Ding H Y, Dai Z D, Skuiry S C, Hui D. Tribol Int, 2010; 43: 868
[11]Li H X, Rudnev V S, Zheng X H, Yarovay T P, Song R G. J Alloys Compd, 2008; 462: 99
[12]Nie X,Wilson A, Leyland A, Matthews A. Surf Coat Technol, 2000; 121: 506
[13]Dobrzanski L A, Polok M, Panjan P, Bugliosi S, Adamiak M. J Mater Process Technol, 2004; 155-156: 1995
[14]Baragetti S, Gerosa R, Rivolta B, Silva G, Tordini F. Procedia Eng, 2011; 10: 3375
[15]Dobrza’nski L A, Polok M, Adamiak M. J Mater Process Technol, 2005; 164-165: 843
[16]Hua M, Ma H Y, Li J, Mok C K. Surf Coat Technol, 2006; 200: 3612
[17]Xia C B, Wang D J. Surface Engineering of Aviation Maintenance. Xinyang: Air Force flight School Press, 1997: 206
(夏成宝, 汪定江. 航空维修表面工程. 信阳: 空军一航院出版社, 1997: 206)
[18]Wang Y X, Wang L P, Xue Q J. Appl Surf Sci, 2011; 257: 10246
[19]Wang Y X, Wang L P, Wang S C, Zhang G A, Wood R J K, Xue Q J. Tribol Lett, 2010; 40: 301
[20]Teer D G. Wear, 2001; 251: 1068
[21]Renevier N M, Hamphire J, Fox V C, Allen T, Teer D G. Surf Coat Technol, 2001; 142: 67
[22]Zhao L, Fu Y H, Liu D Y, Zhu X D, He J W. Chin J Inorg Mater, 2005; 20: 181
(赵蕾, 付永辉, 刘登益, 朱晓东, 何家文. 无机材料学报, 2005; 20: 181)
[23]Chen D C, Jiang B L, Shi H Y, Long Y N. Vacuum, 2012; 86: 1576
[24]Shi H Y, Zhang B, Jiang B L, Zhang Y H, Chen Z S. Trans Mater Heat Treat, 2009; 30: 136
[25]Ichimur H, Ishii Y. Surf Coat Technol, 2003; 165: 1
[1] 董丹,蒋百灵,郭萌,杨超. 碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究[J]. 金属学报, 2017, 53(7): 879-887.
[2] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[3] 马明明,连峰,臧路苹,项秋宽,张会臣. 凹坑深度对铝合金表面在不同润滑介质中摩擦学性能的影响[J]. 金属学报, 2017, 53(4): 406-414.
[4] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[5] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[6] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[7] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[8] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[9] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[10] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[11] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[12] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[13] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.
[14] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
[15] 杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘. 等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能[J]. 金属学报, 2012, 48(12): 1422-1430.