Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 983-988    DOI: 10.3724/SP.J.1037.2011.00748
  论文 本期目录 | 过刊浏览 |
打底层对铝合金表面GLC镀层组织和摩擦学特性的影响
时惠英,龙艳妮,蒋百灵,陈迪春
西安理工大学材料科学与工程学院, 西安 710048
EFFECT OF SUBLAYER ON THE STRUCTURES AND TRIBOLOGICAL PROPERTIES OF GLC COATING ON Al–BASED ALLOY
SHI Huiying, LONG Yanni, JIANG Bailing, CHEN Dichun
School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048
引用本文:

时惠英 龙艳妮 蒋百灵 陈迪春. 打底层对铝合金表面GLC镀层组织和摩擦学特性的影响[J]. 金属学报, 2012, 48(8): 983-988.
, , , . EFFECT OF SUBLAYER ON THE STRUCTURES AND TRIBOLOGICAL PROPERTIES OF GLC COATING ON Al–BASED ALLOY[J]. Acta Metall Sin, 2012, 48(8): 983-988.

全文: PDF(2268 KB)  
摘要: 采用非平衡磁控溅射离子镀技术在铝合金表面分别制备了以Cr和Al为打底层,Cr-C和Al-Cr-C为过渡层的Cr/Cr-C/类石墨碳(GLC)和Al/Al-Cr-C/GLC复合镀层, 并与无打底层制备GLC镀层对比, 系统研究了不同镀层微观结构、膜基结合力及摩擦学性能. 结果表明, 铝合金基体表面Cr打底层呈柱状晶生长, Cr/C过渡层无柱状晶特征,且随过渡层增厚, 富Cr区域减少, 实现了成分的梯度变化;  Al打底层与铝合金基体间为一个整体, 没有明显界面; Al-Cr-C过渡层的成分也呈梯度变化; 采用不同打底层和过渡层时, GLC层均为非晶态结构. 较无打底层制备GLC镀层, Cr/Cr-C/GLC和Al/Al-Cr-C/GLC复合镀层与铝合金基底间的膜基结合力显著增强, 以Al为打底层的复合镀层的失效临界载荷最大. 磨损实验中, 在不同载荷条件下2种复合镀层均具有低的摩擦系数.
关键词 非平衡磁控溅射离子镀 GLC镀层 微观结构 结合力 摩擦学性能    
Abstract:Graphite–like carbon (GLC) film is a kind of antifriction coating. Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings were prepared by using an unbalanced magnetron sputtering system on Al–based alloy, where Al and Cr layer are the sublayers, Cr–C and Al–Cr–C are the transition layers. As a comparation, the GLC coating without sublayer was also deposited on the substrate. The microstructure, binding force and tribological properties of as–deposited coatings were studied. The results show that the Cr sublayer shows a columnar growth structure, while the columnar grain is not found in the Cr–C transition layer which has a gradient composition distribution. There is a good combining interface between Al sublayer and Al–based alloy substrate. Al–Cr–C transition layer has a gradient composition distribution also. GLC layers based on different sublayers and transition layers have amorphous structures. Compared with GLC coating without sublayer, the binding forces of Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings are obviously higher, and the Al/Al–Cr–C/GLC composite coating has the maximum critical load. Under different loading conditions, the friction coefficients of both Cr/Cr–C/GLC and Al/Al–Cr–C/GLC composite coatings are low and similar to each other.
Key wordsunbalanced magnetron sputtering    GLC film    microstructure    binding force    tribological property
收稿日期: 2011-12-05     
ZTFLH: 

TG146.2

 
基金资助:

国家重点基础研究发展计划资助项目2009CB724406

作者简介: 时惠英, 女, 1959年生, 副教授
[1] Wei T, Yan F, Tian J. J Alloys Compd, 2005; 389: 169

[2] Sun X, Jiang Z, Xin S, Yao Z. Thin Solid Films, 2005; 471: 194

[3] Akarca S S, Altenhof W J, Alpas A T. Tribol Int, 2007; 40: 735

[4] Wu J J. Foundry Technol, 2002; 23: 273

(吴浚郊. 铸造技术, 2002; 23: 273)

[5] Xue W B, Shi X L, Hua M, Li Y L. Appl Surf Sci, 2007; 253: 6118

[6] Donnet C, Erdemir A. Surf Coat Technol, 2004; 180: 76

[7] Xu B S, Zhu S H, Liu S S. Materials Surface Engineering. Harbin: Harbin Institute of Technology Press, 2005: 1

(徐滨士, 朱绍华, 刘世参. 材料表面工程. 哈尔滨 : 哈尔滨工业大学出版社, 2005: 1)

[8] Zhou F, Wang Y, Ding H Y, Wang M L, Yu M, Dai Z D. Surf Coat Technol, 2008; 202: 3808

[9] Zhu M H, Cai Z B, Lin X Z, Ren P D, Tan J, Zhou Z R. Wear, 2007; 263: 472

[10] Ding H Y, Dai Z D, Skuiry S C, Hui D. Tribol Int, 2010; 43: 868

[11] Li H X, Rudnev V S, Zheng X H, Yarovay T P, Song R G. J Alloys Compd, 2008; 462: 99

[12] Nie X,Wilson A, Leyland A, Matthews A. Surf Coat Technol, 2000; 121: 506

[13] Dobrzanski L A, Polok M, Panjan P, Bugliosi S, Adamiak M. J Mater Process Technol, 2004; 155–156: 1995

[14] Baragetti S, Gerosa R, Rivolta B, Silva G, Tordini F. Procedia Eng, 2011; 10: 3375

[15] Dobrza’nski L A, Polok M, Adamiak M. J Mater Process Technol, 2005; 164–165: 843

[16] Hua M, Ma H Y, Li J, Mok C K. Surf Coat Technol, 2006; 200: 3612

[17] Xia C B, Wang D J. Surface Engineering of Aviation Maintenance. Xinyang: Air Force flight School Press, 1997: 206

(夏成宝, 汪定江. 航空维修表面工程. 信阳: 空军一航院出版社, 1997: 206)

[18] Wang Y X, Wang L P, Xue Q J. Appl Surf Sci, 2011; 257: 10246

[19] Wang Y X, Wang L P, Wang S C, Zhang G A, Wood R J K, Xue Q J. Tribol Lett, 2010; 40: 301

[20] Teer D G. Wear, 2001; 251: 1068

[21] Renevier N M, Hamphire J, Fox V C, Allen T, Teer D G. Surf Coat Technol, 2001; 142: 67

[22] Zhao L, Fu Y H, Liu D Y, Zhu X D, He J W. Chin J Inorg Mater, 2005; 20: 181

(赵蕾, 付永辉, 刘登益, 朱晓东, 何家文. 无机材料学报, 2005; 20: 181)

[23] Chen D C, Jiang B L, Shi H Y, Long Y N. Vacuum, 2012; 86: 1576

[24] Shi H Y, Zhang B, Jiang B L, Zhang Y H, Chen Z S. Trans Mater Heat Treat, 2009; 30: 136

[25] Ichimur H, Ishii Y. Surf Coat Technol, 2003; 165: 1
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[9] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[10] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[11] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[12] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[14] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[15] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.