Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 671-677    DOI: 10.3724/SP.J.1037.2011.00735
  论文 本期目录 | 过刊浏览 |
(Y, Gd)2O3∶Eu3+纳米粒子制备过程中的合成动力学
朱红艳1,马伟民1,闻雷2,管仁国3,马雷1,3,吴南1
1. 沈阳化工大学材料科学与工程学院~辽宁省稀土化学及应用重点实验室, 沈阳 110142
2. 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
3. 东北大学材料与冶金学院, 沈阳 110819
SYNTHESIS KINETICS OF (Y, Gd)2O3∶Eu3+ NANO-POWDERS DURING PROCESS OF PREPARATION
ZHU Hongyan1, MA Weimin1, WEN Lei2, GUAN Renguo3,MA Lei1,3, WU Nan1
1. Key Laboratory for Rare-earth Chemical and Applying of Liaoning Province, School of Material Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016
3. Institute of Metallurgy and Materials, Northeastern University, Shenyang 110819
全文: PDF(1665 KB)  
摘要: 采用反向滴定共沉淀法制备出(Y, Gd)2O3∶Eu3+前躯体, 再在不同温度下煅烧, 获得(Y, Gd)2O3∶Eu3+纳米粒子, 用XRD和SEM对样品物相组成及形貌进行了表征; 用TG--DTA获得了样品在不同升温速率下的热分解曲线. 结果表明, 前躯体在煅烧过程中的物相变化分为3个阶段, 用Doyle-Ozawa法和Kissinger法分别计算出各个反应阶段的表观活化能, 其平均值分别为191.54, 557.05和236.58 kJ·mol-1, 并建立了动力学方程; (Y, Gd)2O3∶Eu3+晶粒生长活化能是35.58 kJ·mol-1, 纳米粒子形核过程中的晶粒长大由晶界扩散控制.
关键词 (Y, Gd)2O3∶Eu3+纳米粒子合成动力学活化能微观形貌    
Abstract:Using NH3·H2·O and NH4HCO3 blended solution as a complex precipitation agent, (Y, Gd)2O3∶Eu3+ nano--particles were synthesized by co--precipitation reaction. XRD and SEM were applied to analyze the crystallization and morphology of the sample. The thermal decomposition curves of samples were analysed by TG-DTA at different heating rates. Results showed that under the conditions of pH=10 and reverse titration, the change process of (Y, Gd)2O3∶Eu3+ precursors is divided into three steps. The apparent activation energy of each step was calculated by using the Doyle--Ozawa and Kissinger methods. The calculated results are 191.54, 557.05 and 236.58 kJ·mol-1. The dynamic equations have been also established. The activation energy of (Y, Gd)2O3∶Eu3+ grain growth is 35.58 kJ·mol-1, indicating that  grain growing is primarily controlled by interfacial reaction during process of preparation.
Key words(Y, Gd)2O3∶Eu3+ nano-particle    synthesis kinetics    activation energy    micro-morphology
收稿日期: 2011-11-28      出版日期: 2012-06-11
ZTFLH:  TQ422  
基金资助:

辽宁省自然科学基金项目20062001和 沈阳市科技攻关计划项目F10-053-2-00资助

通讯作者: 马伟民     E-mail: maweimin56@163.com
Corresponding author: 马伟民 Ma Wei-Min     E-mail: maweimin56@163.com
作者简介: 朱红艳, 女, 1987年生, 硕士生

引用本文:

朱红艳,马伟民,闻雷,管仁国,马雷,吴南. (Y, Gd)2O3∶Eu3+纳米粒子制备过程中的合成动力学[J]. 金属学报, 2012, 48(6): 671-677.
ZHU Hongyan, MA Weimin, WEN Lei, GUAN Renguo,MA Lei, WU Nan. SYNTHESIS KINETICS OF (Y, Gd)2O3∶Eu3+ NANO-POWDERS DURING PROCESS OF PREPARATION. Acta Metall Sin, 2012, 48(6): 671-677.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00735      或      http://www.ams.org.cn/CN/Y2012/V48/I6/671

[1] van Eijk C W E. Phys Med Biol, 2002; 47: 85
[2] Hell E, Knuepfer W, Mattern D. Nucl Instrum Methods Phys Res, 2000; 454A: 40
[3] Jung Y S, Kim K H, Jang T Y, Tak Y, Baeck S H. Curr Appl Phys, 2011; 11: 358·
[4] Louardi A, Rmili A, Ouachtari F, Bouaoud A, Elidrissi B, Erguig H. J Alloys Compd, 2011; 509: 9183
[5] Selvam N C S, Kumar R T, Yogeenth K, Kennedy L J, Sekaran G,Vijaga J J. Powder Technol, 2011; 211: 250
[6] Gunawidjaja R, Myint T, Eilers H. Ceram Int, 2012; 38: 775
[7] Taniguchi T, Watanabe T, Katsumata K, Okada K, Matsushita N. J Phys Chem, 2010; 114C: 3763
[8] Chien J T, Hsu D J, Inbaraj B S, Chen B H. Int J Mol Sci, 2010; 11: 2805
[9] Matiadis D, prousis K C, Markopoulou O I. Molecules, 2009; 14: 3914
[10] Si W, Wang J, Wang X H, Gao H, Zhai Y C. J Inorg Mater,2011; 26: 726 (司伟, 王晶, 王修慧, 高宏, 翟玉春. 无机材料学报, 2011; 26: 726)
[11] Si W, Gao H, Wang J, Jiang D, Zhai Y C. Chin J Inorg Chem,2010; 26: 1443 (司伟, 高宏, 王晶, 姜妲, 翟玉春. 无机化学学报,2010; 26: 1443)
[12] Jie X F, Liang G C, Wang L, Zhi X K, Gao L M. Adv Mater Res,2010; 178: 172
[13] Yu H Y, Ren W T, Zhang Y. J Appl Polym Sci, 2009; 113: 17
[14] Zhuang Y X, Xing P F, Duan T F, Shi H Y, He J C. J Rare Earths,2011; 29: 793
[15] Wang C S, Wang R Q, Wang Y, Fu Y X. Key Eng Mater, 2012; 501: 349
[16] Dai J F, Ling R Q, Wang K Z. Adv Mater Res, 2012; 418: 282
[17] Kok M V. Fuel Process Technol, 2012; 96: 134
[18] Ma W M, Wen L, Shen S F, Liu J, Wang H D. Acta Metall Sin,2009; 45: 759 (马伟民, 闻雷, 沈世妃, 刘晶, 王华栋. 金属学报, 2009; 45: 759)
[19] Ozawa T. Bull Chem Soc Jpn, 1965; 38: 1881
[20] Doyle C D. J Appl Polym Sci, 1961; 5: 285
[21] Kisssinger H E. J Res Nat Bue Stand, 1965; 57: 217
[22] Kissingger H E. Anal Chem, 1957; 29: 1702
[23] Zhao Y N, Zhang W L. Adv Mater Res, 2011; 194: 558
[24] Mullaugh K M, Luther G W. J Nanopart Res,2011; 13: 393
[1] 周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.
[2] 刘杰 李相波 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响[J]. 金属学报, 2011, 47(6): 697-705.
[3] 鄢毓璋;兰洪. 高炉低钛渣脱硫的动力学研究[J]. 金属学报, 1991, 27(4): 80-83.
[4] 李诚;刘纯鹏. PbS和PbO·SiO_2交互反应动力学[J]. 金属学报, 1991, 27(1): 145-147.
[5] 石南林;刘清民;常新春;全荣;夏非. SiC纤维的强度与表面微观形貌[J]. 金属学报, 1990, 26(3): 153-156.