Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 250-256    DOI: 10.3724/SP.J.1037.2011.00721
  论文 本期目录 | 过刊浏览 |
超轻β固溶体Mg-11Li-3Zn合金的准超塑性与变形机理
曹富荣1,丁桦1,王昭东2,李英龙1,管仁国1,崔建忠3
1. 东北大学材料与冶金学院, 沈阳 110819
2. 东北大学轧制与连轧自动化国家重点实验室, 沈阳 110819
3. 东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY
CAO Furong 1, DING Hua 1, WANG Zhaodong 2, LI Yinglong 1, GUAN Renguo 1, CUI Jianzhong 3
1. College of Materials and Metallurgy, Northeastern University, Shenyang 110819
2. State Key Lab of Rolling and Tandem Rolling Automation, Northeastern University, Shenyang 110819
3. Key Lab of Materials Electromagnetic Process Research, Ministry of Education, Northeastern University, Shenyang 110819
引用本文:

曹富荣 丁桦 王昭东 李英龙 管仁国 崔建忠. 超轻β固溶体Mg-11Li-3Zn合金的准超塑性与变形机理[J]. 金属学报, 2012, 48(2): 250-256.
, , , , , . QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY[J]. Acta Metall Sin, 2012, 48(2): 250-256.

全文: PDF(677 KB)  
摘要: 采用铸造和轧制的方法获得了1.2 mm厚密度为1.43 g/cm3的超轻Mg-11Li-3Zn合金板材, 在573 K和1.67×102 s-1条件下拉伸获得了200%的延伸率,其在高应变速率下呈现准超塑性; 在拉伸过程中试样发生显著的动态再结晶导致晶粒细化,晶粒尺寸由平均27 μm减小到9 μm; 此条件下的应力指数为4.4, 流动激活能112.6 kJ/mol. 分析表明,573 K和1.67×10-2 s-1条件下试样拉伸过程中的变形机理为晶格扩散控制的位错攀移.
关键词 Mg-Li-Zn合金 准超塑性 力学性能 显微组织 变形机理    
Abstract:1.2 mm thickness sheets of ultralight Mg–11Li–3Zn alloy with a density of 1.43 g/cm3 was obtained by casting and rolling, the elongation to failure is 200% at 573K with 1.67×10−2 s−1 tensile rate, which indicates high strain rate quasi–superplasticity. Significant dynamic recrystallization and grain refinement occur at 573 K and 1.67×10−2 s−1 under which the grain size turns from initial 27 μm into 9 μm, the stress exponent is 4.4 and the activation energy for flow is 112.6 kJ/mol. It is considered that the deformation mechanism of Mg–11Li–3Zn alloy at 573 K and 1.67×10−2 s−1 is dislocation climb controlled by lattice diffusion.
Key wordsMg–Li–Zn alloy    quasi-superplasticity    mechanical property    microstructure    deformation mechanism
收稿日期: 2011-11-18     
ZTFLH: 

TG113

 
基金资助:

国家自然科学基金项目50974038和51034002资助

作者简介: 曹富荣, 男, 1964年生, 副教授, 博士
[1] Counts W A, Friak M, Raabe D, Neugebauer J. Acta Mater, 2009; 57: 69

[2] Cao F R, Lei F, Cui J Z,Wen J L. Acta Metall Sin, 1999; 35: 770

(曹富荣, 雷方, 崔建忠, 温景林. 金属学报, 1999; 35: 770)

[3] Cao F R, Guan R G, Ding H, Li Y L, Zhou G, Cui J Z. Acta Metall Sin, 2010; 46: 715

(曹富荣, 管仁国, 丁 桦, 李英龙, 周舸, 崔建忠. 金属学报, 2010; 46: 715)

[4] Nayeb–Hashemi A A, Clark J B, Pelton A D. Bull Alloy Phase Diagram, 1984; 5: 365

[5] Raynor G V. The Physical Metallurgy of Magnesium and Its Alloys. London: Pergamon Press, 1959: 265

[6] Metenier P, Gonzalez–Doncel G, Ruano O A, Wolfenstine J, Sherby O D. Mater Sci Eng, 1990; A125: 195

[7] Fujitani W, Furushiro N, Hori S, Kumeyama K. J Jpn Ins Light Met, 1992; 42: 125

[8] Higashi K, Wolfenstine J. Mater Letter, 1991; 10: 329

[9] Kojima Y, Inoue M, Tanno O. J Japan Inst Metal, 1990; 54: 354

[10] Cao F R, Ding H, Li Y L, Zhou G, Cui J Z. Mater Sci Eng, 2010; A527: 2335

[11] Dong S L, Imai T, Lim SW, Kanetake N, Saito N. J Mater Sci, 2007; 42: 5296

[12] Liu X H, Zhan H B, Gu S H, Qu Z K, Wu R Z, Zhang M L. Mater Sci Eng, 2010; A528: 6157

[13] Furui M, Kitamura H, Anada H, Langdon T G. Acta Mater, 2007; 55: 1083

[14] Ashby M F. Acta Metall, 1972; 20: 887

[15] Mohamed F A, Langdon T G. Metall Trans, 1974; 5A: 2339

[16] Ruano O A, Wadsworth J, Sherby O D. J Mater Sci, 1985; 20: 3735

[17] Sajjadi S A, Nategh S. Mater Sci Eng, 2001; A307: 158.

[18] Tanaka H, Yamada T, Sato E, Jimbo I. Scr Mater, 2006; 54: 121

[19] Chung S W, Higashi K, Kim W J. Mater Sci Eng, 2004; A372: 15

[20] Oikawa H, Langdon T G. in: Wilshire B, Evans R W eds., Creep Behavior of Crystalline Solids. UK: Pineridge Press Limited, 1985: 64

[21] Woo S S, Kim Y R, Shin D H, Kim W J. Scr Mater, 1997; 37: 1351

[22] Yavari P, Langdon T G. Acta Metall, 1982; 30: 2181

[23] Langdon T G. Acta Metall Mater, 1994; 42: 2437

[24] Weinberg A F, Levinson D W, Rostoker W. Trans ASM, 1956; 48: 855

[25] Syn C K, Lesuer D R, Sherby O D. Mater Sci Eng, 1996; A201: 201

[26] Ma A B, Nishida Y, Saito N, Shigematsu I, Lim S W. Mater Sci Technol, 2003; 19: 1642

[27] Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K. Mater Sci Eng, 2005; A407: 53

[28] Li Y, Langdon T G. Acta Mater, 1998; 46: 1143

[29] Cao F R. PhD Thesis, Northeastern University, Shenyang, 1999

(曹富荣. 东北大学博士学位论文, 沈阳, 1999)

[30] Friedel J. Dislocations. Oxford: Pergamon Press, 1964: 331

[31] Wang J S, Nix W D. Acta Metall, 1986; 34: 545

[32] Fuentes–Samaniego R, Nix W D. Scr Metall, 1981; 15: 15

[33] Somekawa H, Mukai T. Scr Metall, 2007; 57: 1008

[34] Wolfenstine J, Gonzalez–Docel G, Sherby O D. J Mater Res, 1990; 5: 1359

[35] Lee B H, Shin K S, Lee C S. Mater Sci Forum, 2005; 475–479: 2927

[36] Zhang B, Mynors D J, Mugarra A, Ostolaza K. Mater Sci Forum, 2004; 447–448: 171

[37] Kassner M E, Perez–Prado M T. Prog Mater Sci, 2000; 45: 1

[38] Nieh T G, Wadsworth J, Sherby O D. Superplasticity in Metals and Ceramics. Cambridge: Cambridge University Press, 1997: 34

[39] Chow K K, Chan K C. Key Eng Mater, 2000; 177–180: 601

[40] Langdon T G. J Mater Sci, 2009; 44: 5998

[41] Mohri T, Mabuchi M, Nakamura M, Asahina T, Iwasaki H, Aizawa T, Higashi K. Mater Sci Eng, 2000; A290: 139

[42] Hirai K, Somekawa H, Takigawa Y, Higashi K. Scr Mater, 2007; 56: 237

[43] Cadek J. Creep In Metallic Materials. Holland: Elsevier, 1988: 161

[44] Mishra R S, Stolyarov V V, Echer C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2001; A298: 44

[45] Kawasaki M, Kubota K, Higashi K, Langdon T G. Mater Sci Eng, 2006; A429: 334

[46] Watanabe H, Mukai T, Kohzu M, Tanabe S, Higashi K. Acta Mater, 1999; 47: 3753
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.