Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 485-491    DOI: 10.3724/SP.J.1037.2011.00704
  论文 本期目录 | 过刊浏览 |
相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响
周广钊,王永欣,陈铮
西北工业大学凝固技术国家重点实验室, 西安 710072
PHASE-FIELD METHOD SIMULATION OF THE EFFECT OF ELASTIC STRAIN ENERGY ON COARSENING DYNAMICS DURING THE α2O PHASE TRANSFORMATION IN Ti-Al-Nb ALLOYS
ZHOU Guangzhao, WANG Yongxin, CHEN Zheng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
, , . PHASE-FIELD METHOD SIMULATION OF THE EFFECT OF ELASTIC STRAIN ENERGY ON COARSENING DYNAMICS DURING THE α2O PHASE TRANSFORMATION IN Ti-Al-Nb ALLOYS[J]. Acta Metall Sin, 2012, 48(4): 485-491.

全文: PDF(778 KB)  
摘要: 采用相场方法模拟了Ti-Al-Nb合金α2O相转变, 探讨了有无外力场作用下弹性应变能对O相颗粒形貌、取向、数目、体积分数及平均尺寸的影响. 结果表明: 在弹性应变能作用下, 颗粒形貌为长方块状, 且沿弹性软方向分布; 无外力场时, 弹性应变能越大, 沉淀相越易形核, 稳定时颗粒数目越多, 体积分数及平均尺寸越小; 在外力场作用下, 取向有利的变体优先长大, 取向不利的变体长大受到抑制; 在较小压应力作用下, 沉淀相易于形核, 稳定时颗粒数目增多, 体积分数减小; 在拉应力或较大压应力作用下, 应力越大, 越难于形核, 稳定时颗粒数目越少, 体积分数越大.
关键词 弹性应变能Ti-Al-Nb合金α2 O相变粗化动力学相场法    
Abstract:The Ti-Al-Nb alloys have received significant attention due to its excellent properties for high-temperature applications. The α2O phase transformation taking place in these alloys leads to complex multi-variant and multi-domain microstructure, which has been extensive researched by experimental studies. The morphology, size, spatial arrangement of multi-variant and the volume fraction of precipitated phase, which are determined by the elastic strain energy, affect the important physical and mechanical properties of these alloys. So it is important to examine the effect of elastic strain energy on coarsening dynamics during the α2O phase transformation. In this study, phase-field method has been used to simulate the α2O phase transformation, and the effect of elastic strain energy on coarsening dynamics especially the morphology, orientation, number and the volume fraction of precipitated phase particles have been discussed. The results show that elastic strain energy has great impact on the morphology and orientation of precipitated phase particles. As the result of elastic strain energy, particles transformed into block and aligned along the elastic soft directions. The greater elastic strain energy in system without applying any external stress, the easier nucleation and the smaller volume fraction and mean size of particles when system was steady. An applied stress can result in the selective growth of precipitated phase variants, which promotes the precipitation of favored variants and retards the precipitation of other variants, finally changes the morphology. When system applied small pressure stress, the number of particles increased which eventually led to the reduction of mean size. Volume fraction of precipitated phase increased with increasing external stress when it is over a certain extent.
Key wordselastic strain energy    Ti-Al-Nb alloy    α2O phase transformation    coarsening dynamics    phase-field method
收稿日期: 2011-11-14     
基金资助:

国家自然科学基金项目 51075335, 10902086, 51174168和50875217以及西北工业大学基础研究基金 NPU-FFR-JC201005 资助

作者简介: 周广钊, 男, 1987年, 硕士生
[1] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D.  Structural Intermetallics. Beijing: National Defence Industrial Press, 2001: 705

    (张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料.北京: 国防工业出版社, 2001: 705)

[2] Li C G, Fu H Z, Yu Q.  Aerospace Materials. Beijing: National Defence Industrial Press, 2002: 100

    (李成功, 傅恒志, 于翘. 航空航天材料. 北京: 国防工业出版社, 2002: 100)

[3] Lin D L.  J Shanghai Jiao Tong Univ, 1998; 32: 95

    (林栋梁. 上海交通大学学报, 1998; 32: 95)

[4] Heng Q Y.  Mater Sci Eng, 1999; A263: 289

[5] Peng C Q, Huang B Y, He Y H.  Chin J Nonferrous Met, 2001; 11: 527

    (彭超群, 黄伯云, 贺跃辉. 中国有色金属学报. 2001; 11: 527)

[6] Xiao G, Huang B Y, Qu X H, He Y H, Zhou K Z.  Rare Met, 1996; 20: 50

    (肖刚, 黄伯云, 曲选辉, 贺跃辉, 周科朝. 稀有金属, 1996; 20: 50)

[7] Brady M P, Brindley W J, Smialek J L.  JOM, 1996; 48: 46

[8] Kui G Y, Sun L.  Mater Rev, 2008; 22: 339

    (隗功益, 孙丽. 材料导报, 2008; 22: 339)

[9] Maki K, Shioda M, Sayashi M, Shimizu T, Isobe S.  Mater Sci Eng,1992; A153: 591

[10] Haanappel V A C, Clemens H, Stroosnijder M F.  Intermetallics,2002; 10: 293

[11] Zhang W J, Chen G L, Sun Z Q.  Scr Metall Mater, 1993; 28: 563

[12] Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B, Nathal M V.  Structural Intermetallics. Warrendale: Metallurgical Society of AIME, 1993: 19

[13] Leyens C, Peters M.  Titanium and Titanium Alloys. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 54

[14] Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871

[15] Bendersky L A, Roytburd A, Boettinger W J.  J Res Natl Inst Stand Technol, 1993; 98: 561

[16] Bendersky L A, Boettinger W J.  J Res Natl Inst Stand Technol, 1993; 98: 585

[17] Bendersky L A, Boettinger W J.  Acta Metall Mater, 1994; 42: 2337

[18] Muraleedharan K, Banerjee D.  Scr Metall Mater, 1993; 29: 527

[19] Muraleedharan K, Banerjee D.  Philos Mag, 1995; 71A: 1011

[20] Muraleedharan K, Nandy T K, Banerjee D, Lele S.  Intermetallics, 1995; 3: 187

[21] Pierron X, De Graef M, Thompson A W.  Phil Mag, 1998; 77A: 1399

[22] Gogia A K, Nandy T K, Banerjee D, Carisey T, Strudel J L, Franchet J M.  Intermetallics, 1998; 6: 741

[23] Wen Y H, Wang Y, Bendersky L A, Chen L Q.  Acta Mater, 2000; 48: 4125

[24] Wen Y H, Wang Y, Chen L Q.  Acta Mater, 2001; 49: 13

[25] Chen L Q, Shen J.  Comput Phys Commun, 1998; 10: 147

[26] Zhu J Z, Chen L Q.  Phys Rev, 1999; 60E: 3565
[1] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[3] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[4] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[5] 张军,陈文雄,郑成武,李殿中. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53(6): 760-768.
[6] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[7] 张军,郑成武,李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程*[J]. 金属学报, 2016, 52(11): 1449-1458.
[8] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[9] 赵彦,张洪宇,韦华,郑启,金涛,孙晓峰. 相场法研究含第二相颗粒多晶体系的晶粒粗化标度律[J]. 金属学报, 2013, 49(8): 981-988.
[10] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[11] 柯常波,曹姗姗,马骁,黄平,张新平. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟[J]. 金属学报, 2013, 49(1): 115-122.
[12] 柯常波 马骁 张新平. 孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J]. 金属学报, 2011, 47(2): 129-139.
[13] 柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.
[14] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
[15] 苗树芳 陈铮 王永欣 徐聪 马锐 张明义. L10相和L12相结构原位转变的微观相场法模拟[J]. 金属学报, 2009, 45(5): 630-634.