Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 371-378    DOI: 10.3724/SP.J.1037.2011.00615
  论文 本期目录 | 过刊浏览 |
Zn含量对反挤压Mg-8Sn-Zn合金组织演变和力学性能的影响
程伟丽1, 2), 阙仲萍1), 张金山1), 许春香1), 梁伟1), YOU Bongsun2)
1) 太原理工大学材料科学与工程学院, 太原 030024
2)  韩国材料科学研究所, 韩国 昌原641--831
EFFECTS OF Zn CONTENT ON MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF INDIRECT-EXTRUDED Mg-8Sn-Zn ALLOYS
CHENG Weili1, 2), QUE Zhongping, ZHANG Jinshan, XU Chunxiang, LIANG Wei, YOU Bongsun2)
1) School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024
2) Korea Institute of Materials Science, Changwon 641-831, Republic of Korea
引用本文:

程伟丽 阙仲萍 张金山 许春香 梁伟 YOU Bongsun. Zn含量对反挤压Mg-8Sn-Zn合金组织演变和力学性能的影响[J]. 金属学报, 2012, 48(3): 371-378.
, , , , , , . EFFECTS OF Zn CONTENT ON MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF INDIRECT-EXTRUDED Mg-8Sn-Zn ALLOYS[J]. Acta Metall Sin, 2012, 48(3): 371-378.

全文: PDF(5601 KB)  
摘要: 利用OM, SEM, TEM, EBSD, XRD和电子材料试验机研究了Zn含量(1%---4%, 质量分数)对反挤压Mg-8Sn-Zn合金组织、织构演化
和力学性能的影响. 结果表明, 所有合金均可在相对较低的挤压温度(250 ℃)和较高的挤压速度\linebreak (2 m/min)下成形. 在反挤压过程
中, 所有在均质化处理后残留的粗大第二相在挤压过程中破碎并沿着挤压方向被拉伸成条带状; 所有的粗大晶粒均转变为细小的等
轴晶, 其平均晶粒尺寸分别为7.4, 8.3和10.5 μm.  随着Zn含量的增加, 在挤压态合金晶内和晶间分布的细小弥散第二相的体
积分数增加, 这些第二相主要由亚微米级的Mg$_{2}$Sn相和纳米级的富Zn相组成. 弥散分布在晶界上的第二相有效地钉扎了晶界,
从而细化了晶粒尺寸. 另外随着Zn含量的增加, 合金的织构强度降低, 这和变形晶粒的体积分数减小有关. 组织细化、织构弱化和
第二相弥散化是Mg-Sn-Zn合金强度提高和拉伸/压缩屈服点各向异性减弱的主要因素.
关键词 镁合金挤压组织演变织构力学性能    
Abstract:The influence of Zn content on the microstructure evolution, texture and mechanical properties of indirect-extruded Mg-8wt.%Sn-Zn alloys have been investigated by OM, SEM, TEM, EBSD, XRD and a standard universal testing machine. The studied alloys were demonstrated to be extrudable at a relatively low temperature (250℃) and a high extrusion speed (2 m/min). During the extrusion process, most of the remained second phase particles present in the homogenized alloy are found to be aligned along the extrusion direction (ED) in the form of stringers after being broken into fragments during the extrusion process. While most of the coarse grains were changed into fine equiaxed grains with average sizes ranging from 10.5 μm to 7.4 μm. The volume fractions of the second phase particles increase with increasing Zn content while the grain size and texture strength decrease with increasing Zn content. These second phase particles are mainly composed of Mg2Sn, having a diameter of submicron and some nano-meter Zn-rich phases. Furthermore, the decrease in grain size can be explained by the Zener drag of fine particles. While, the textural weakening with Zn addition is associated with the decreased fraction of elongated grains retain strong fiber texture. The improvement in strength and reduction in yield asymmetry of the studied alloy were associated with finer grain size, higher fraction of second phase and weaker texture.
Key words
magnesium alloy
   extrusion    microstructure evolution,    texture    mechanical property
收稿日期: 2011-09-28     
ZTFLH: 

TG146.2

 
基金资助:

韩国知识经济部重点技术和材料基础研究和发展项目

作者简介: 程伟丽, 男, 1982年生, 副教授, 博士
[1] Mordike B L, Ebert T. Mater Sci Eng, 2003; A302: 37

[2] Kang D H, Park S S, Kim N J. Mater Sci Eng, 2005; A413–414: 555

[3] Park S S, You B S, Yoon D J. J Mater Pro Technol, 2009; 209: 5940

[4] Yang M, Pan F, Cheng L, Shen J. Mater Sci Eng, 2009; A512: 132

[5] Bettles C J, Gibson M A. JOM, 2005; 57: 46

[6] Mendis C L, Bettles C J, Gibson M A, Hutchinson C R. Mater Sci Eng, 2006; A435–436: 163

[7] Sasaki T T, Oh–ishi K, Ohkubo T, Hono K. Scr Mater, 2006; 55: 251

[8] Liu H M, Chen Y G, Tang Y B, Wei S H, Niu G. J Alloy Compd, 2007; 440: 122

[9] Harosh S, Miller L, Levi G, Bamberger M. J Mater Sci, 2007; 42: 9983

[10] Sasaki T T, Yamamoto K, Honma T, Kamado S, Hono K. Scr Mater, 2008; 59: 1111

[11] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31

[12] Cheng W L, Park S S, You B S, Koo B H. Mater Sci Eng, 2010; A527: 4650

[13] Ball E A, Prangnell B. Scr Mater, 1994; 31: 111

[14] Humphreys F J. Acta Metall Mater, 1977; 25: 1323

[15] Robson J D, Henry D T, Davis B. Acta Mater, 2009; 57: 2739

[16] Mendis C L, Oh–ishi K, Kawamura Y, Honma T, Kamado S, Hono K. Acta Mater, 2009; 57: 749

[17] Shahzad M, Wagner L. Mater Sci Eng, 2009; A506: 141

[18] Cheng W L, Kim H S, You B S, Koo B H, Park S S. Mater Lett, 2011; 65: 1525

[19] Mackenzie L W F, Pekguleryuz M. Mater Sci Eng, 2008; A480: 189

[20] Stanford N, Barnett M R. Mater Sci Eng, 2008; A496: 399

[21] Yuan W, Panigrahi S K, Su J–Q, Mishra R S. Scr Mater, 2011; 65: 994

[22] Kang D H, Kim D W, Kim S B, Kim H K. Scr Mater, 2009; 61: 768

[23] Lim H K, Kim D H, Lee J Y, Kim W T, Kim D H. J Alloy Compd, 2009; 468: 308

[24] Wang Y N, Huang J C. Acta Mater, 2007; 55: 897

[25] Lim H K, Sohn S W, Lee J Y, Kim W T, Kim D H. J Alloys Compd, 2008; 454: 515

[26] Lee J Y, Lim H K, Kim D H, Won K T, Kim D H. Mater Sci Eng, 2007; A449–451: 987

[27] Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K. Acta Mater, 2003; 51: 2055

[28] Koike J. Metall Mater Trans, 2005; 36A: 1689

[29] Barnett M R. Scr Mater, 2008; 59: 696

[30] Jain J, Poole W J, Sinclair C W, Gharghouri M A. Scr Mater, 2010; 62: 301

[31] Stanford N, Barnett, M R. Mater Sci Eng, 2009; A516: 226
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.