Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 227-234    DOI: 10.3724/SP.J.1037.2011.00609
  论文 本期目录 | 过刊浏览 |
相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响
周广钊,王永欣,陈铮
西北工业大学凝固技术国家重点实验室, 西安 710072
PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH
ZHOU Guangzhao, WANG Yongxin, CHEN Zheng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
引用本文:

周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
, , . PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH[J]. Acta Metall Sin, 2012, 48(2): 227-234.

全文: PDF(947 KB)  
摘要: 采用相场方法研究了不同颗粒体积分数及尺寸条件下不同形状的硬质颗粒对两相系统晶粒长大的影响, 结果表明: 球形颗粒大多处于三角晶界处, 片状颗粒处于晶界处且沿晶界分布. 不同形状的硬质颗粒对体积占优的α相晶粒长大无明显影响, 对体积分数较小的β相晶粒长大的影响主要取决于颗粒数目. 颗粒数目较少时, 不同形状的硬质颗粒对β相晶粒长大无明显影响; 颗粒数目较多时, 片状颗粒比球形颗粒对β相晶粒长大的阻碍作用强烈. 颗粒体积分数越大,颗粒对晶界的钉扎作用越强, 稳态时晶粒的半径越小; 颗粒尺寸越大,单个颗粒对晶界的钉扎作用越强, 但总的钉扎作用越弱, 稳态时晶粒的半径越大.
关键词 相场方法 两相晶粒长大 硬质颗粒形状    
Abstract:The effects of hard particles with different shapes, volume fractions and sizes on two–phase grain growth have been systematically investigated by phase–field method. The results showed that most of the spherical hard particles located at the intersection of tricrystal boundary, while flaky hard particles distributed along the grain boundary. Particles of different shapes have not obvious effect on the α phase grain growth, and the effect of hard particles with different shapes on the β phase grain growth depends on the number of particles. The flaky particles have stronger pinning effect on the β phase grain growth than the spherical particles when hard particles reach enough number. The pinning effect of the hard particles is enhanced when the volume fraction increased or the size of hard particles reduced. The greater the volume fraction or the smaller the size of hard particles is, the smaller the grains’size is.
Key wordsphase–field method    two–phase grain growth    hard particle shape
收稿日期: 2011-09-28     
基金资助:

国家自然科学基金项目51075335, 10902086和51174168以及西北工业大学基础研究基金项目NPU-FFR-JC201005 资助

作者简介: 周广钊, 男, 1987年, 硕士生
[1] Ryum N, Hunderi O, Nes E. Scr Metall, 1983; 17: 1281

[2] Moelans N, Blanpain B, Wollants. Acta Mater, 2006; 54: 1175

[3] Doherty R D, Srolovitz D J, Rollett A D, Anderson M P. Scr Metall, 1987; 21: 675

[4] Hassold G N, Holm E A, Srolovitz D J. Scr Metall, 1990; 24: 101

[5] Miodownik M, Holm E A, Hassold G N. Scr Metall, 2000; 42: 1173

[6] AndersonM P, Grest G S, Doherty R D, Kang Li, Srolovitz D J. Scr Metall, 1989; 23: 753

[7] Liu Z Y, Zheng Z Q, Chen D Q, Li S C. Chin J Nonferrous Met, 2004; 14: 122

(刘祖耀, 郑子樵, 陈大钦, 李世晨. 中国有色金属学报, 2004; 14: 122)

[8] Zhang J X, Guan X J. Chin J Nonferrous Met, 2006; 16: 1689

(张继祥, 关小军. 中国有色金属学报, 2006; 16: 1689)

[9] Song X Y, Liu G Q, Gu N J. Acta Metall Sin, 1999; 35: 565

(宋晓艳, 刘国权, 谷南驹. 金属学报,1999; 35: 565)

[10] Moelans N, Blanpain B, Wollants P. Calphad, 2008; 32: 268

[11] Suwa Y, Saito Y, Onodera H. Scr Mater, 2006; 55: 407

[12] Suwa Y, Satio Y, Onodera H. Acta Mater, 2007; 55: 6881

[13] Vanherpe L, Moelans N, Blanpain B, Vandewalle S. Phys Rev, 2007; 76E: 056702

[14] Vanherpe L, Moelans N, Blanpain B, Vandewalle S. Comput Mater Sci, 2010; 49: 340

[15] Moelans N, Blanpain B, Wollants P. Acta Mater, 2007; 55: 2173

[16] Li J J, Wang J C, Yang G C. Rare Met Mater Eng, 2008; 37: 1746

(李俊杰, 王锦程, 杨根仓. 稀有金属材料与工程, 2008; 37: 1746)

[17] Long Y Q, Liu P, Liu Y, Pan J S. Chin J Nonferrous Met, 2009; 19: 84

(龙永强, 刘平, 刘勇, 潘健生. 中国有色金属学报, 2009; 19: 84)

[18] Long Z R, Gao Y J, Qiu H G, Zhang H L. Chin J Nonferrous Met, 2010; 20: 2406

(罗志荣, 高英俊, 邱鸿广, 张海林.中国有色金属学报, 2010; 20: 2406)

[19] GaoY J, Zhang H L, Jin X, Huang C G, Luo Z R. Acta Metall Sin, 2009; 45: 1190

(高英俊, 张海林, 金 \ \ 星, 黄创高, 罗志荣. 金属学报, 2009; 45: 1190)

[20] Fan D, Chen L Q. Acta Metall, 1997; 45: 3297

[21] Fan D, Chen L Q. Acta Metall, 1997; 45: 4145

[22] Fan D, Chen L Q. J Am Ceram Soc, 1997; 80: 1773

[23] Fan D, Chen L Q. J Am Ceram Soc, 1998; 81: 526

[24] Song K, Aindow M. Mater Sci Eng, 2008; A479: 365

[25] Ringer S P, Li W B, Easterling K E. Acta Metall, 1989; 37: 831

[26] Li W B, Easterling K E. Acta Metall, 1990; 38; 1045

[27] Cherukuri B, Srinivasan R, Tamirisakandala S, Miracle D B. Scr Mater, 2009; 60: 496

[28] Ringer S P, Li W B, Easterling K E. Acta Metall, 1992; 40: 275

[29] Ringer S P, Li W B, Easterling K E. in Chandra ed., Recrystallization’ 90 in Metals and Materials. Warrendale, PA: TMS–AIME, 1990; 26: 483
[1] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[2] 赵彦,张洪宇,韦华,郑启,金涛,孙晓峰. 相场法研究含第二相颗粒多晶体系的晶粒粗化标度律[J]. 金属学报, 2013, 49(8): 981-988.
[3] 张玉妥; 庞维诚 . 用相场方法模拟纯物质等轴枝晶生长[J]. 金属学报, 2000, 36(6): 589-591 .