Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 194-198    DOI: 10.3724/SP.J.1037.2011.00560
  论文 本期目录 | 过刊浏览 |
磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响
罗庆洪,李春志,娄艳芝,赵振业
北京航空材料研究院, 北京 100095
GRINDING PROCESS EFFECT ON SURFACE MODIFICATIVE LAYER MICROSTRUCTURE, PROPERTY AND FATIGUE BEHAVIOR OF CARBURIZED M50NiL STEEL
LUO Qinghong, LI Chunzhi, LOU Yanzhi, ZHAO Zhenye
Beijing Institute of Aeronautical Materials, Beijing 100095
全文: PDF(748 KB)  
摘要: 本文以渗碳热处理后的M50NiL钢为研究对象, 利用Vickers硬度计、XRD, TEM, HRTEM以及旋转弯曲疲劳试验仪对普通磨削和精密磨削后试样表面变质层微观结构和硬度及试样的疲劳性能进行了研究. 结果表明: 进刀量不同的2种磨削工艺获得的试样表面粗糙度不同, 表面变质层微观结构和硬度以及试样疲劳性能差别较大. 精密磨削对试样硬度产生影响的深度较小. 普通磨削表面变质层奥氏体含量较多, 呈现明显的奥氏体“有效晶粒”现象;精密磨削表面变质层则为非常细小的变形马氏体组织, 呈现明显的纳米级 马氏体“有效晶粒”现象; “有效晶粒”之间无明显的界面, 且晶面扭转现象明显,相邻“有效晶粒”之间转动角度最大可达14°, 同时“有效晶粒”内部晶面 也存在轻微扭转现象; 精密磨削工艺试样的旋转弯曲疲劳寿命约为普通磨削的13倍.
关键词 M50NiL钢 磨削变质层 显微硬度 微观组织 疲劳性能    
Abstract:The surface hardness field, modificative layer microstructure and fatigue properties of carburized M50NiL steel after ordinary grinding and precision grinding, were studied using Vickers hardness tester, XRD, TEM, HRTEM and the rotating bending fatigue tester. The results showed that two grinding processes are different only on the amount of feed and surface roughness, but bring larger changes in the surface hardness field, modificative layer microstructure and fatigue properties. Two kinds of grinding have different effects on the hardness depth, the impact depth of precision grinding is smaller; There was more austenite on ordinary grinding surface, and the surface layer showed a clear modificative layer of austenitic"effective grain"; precision grinding surface modificative layer is very small deformation nano–martensite, but also shows a clear"effective grain"phenomenon;effective grainno obvious interface; "effective grain"turning phenomenon is apparent, adjacent "effective grain"rotation angle is up to 14?, while, there are slight turning phenomenon within the"effective grain"; rotating bending fatigue life of precision grinding increases by about 13 times of ordinary grinding sample.
Key wordsM50NiL steel    grinding modificative layer    microhardness    microstructure    fatigue property
收稿日期: 2011-09-07      出版日期: 2012-02-11
ZTFLH:  TG115.21  
通讯作者: 娄艳芝     E-mail: qhluo@sina.cn
Corresponding author: LUO Qinghong     E-mail: qhluo@sina.cn
作者简介: 罗庆洪, 男, 1974年生, 工程师, 博士

引用本文:

罗庆洪 李春志 娄艳芝 赵振业. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响[J]. 金属学报, 2012, 48(2): 194-198.
LUO Qinghong LI Chunzhi LOU Yanzhi ZHAO Zhenye. GRINDING PROCESS EFFECT ON SURFACE MODIFICATIVE LAYER MICROSTRUCTURE, PROPERTY AND FATIGUE BEHAVIOR OF CARBURIZED M50NiL STEEL. Acta Metall Sin, 2012, 48(2): 194-198.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00560      或      http://www.ams.org.cn/CN/Y2012/V48/I2/194

[1] Ma S Y, Xu J H, He X C, Tan M, Li J B. Acta Metall Sin, 2003; 39: 168(马素媛, 徐建辉, 贺笑春, 覃明, 李家宝. 金属学报, 2003; 39: 168)
[2] Yang Y Y, Fang H S, Huang W G. Tribol Int, 1996; 29: 425
[3] Gao C Q. Friction Metallography. Harbin: Harbin Institute of Technology Press, 1988: 32(高彩桥. 摩擦金属学. 哈尔滨: 哈尔滨工业大学出版社, 1988: 32)
[4] Wang C J, Lu D Q, Wu J X. Carburizing Bearing Steel and Heat Treatment. Beijing: Ordnance Industry Press, 1989: 51(汪传稷, 陆大启, 吴继贤. 渗碳轴承用钢及其热处理. 北京: 兵器工业出版社, 1989: 51)
[5] Fu Y F, Cui L J, L iu Y L, Yan Y J. Heavy Machin Sci Technol, 2003; 4: 37(付云峰, 崔连进, 刘雅琳, 严衍军. 重型机械科技, 2003; 4: 37)
[6] Boehmer H J, Ebert F J, Trojahn W. Lubr Eng, 1992; 48: 28
[7] Rosado L, Jain V K, Trivedi H K. Wear, 1997; 212: 19
[8] Pearson P K, Dickinson T W. in: Hoo J J C ed., Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, ASTM STP 987, Philadelphia, PA: Americansociety for testing and materials, 1988: 113
[9] Xia G Z. China Aeronautical Materials Handbook, Beijing: China Standard Press, 1988: 20(夏恭枕. 中国航空材料手册. 北京: 中国标准出版社, 1988: 20)
[10] B¨ohmer H J. in: Hoo J J C ed., Creative Use of Bearing Steels, ASTM STP 1195, Philadelphia, PA: American society for testing and materials, 1993: 34
[11] Boehmer H J, Ebert F J, Trojahn W. J Soc Tribol Lubr Eng, 1992; 48: 28
[12] Braza J F, Pearson P K. in: Hoo J J C ed., Creative Use of Bearing Steels, ASTM STP 1195, Philadelphia, PA: American society for testing and materials, 1993: 49
[13] Fu Y Q, Gu Y W, Batchelor A W, Zhou W. Mater Sci Technol, 1998; 14: 461
[14] Harris T A, Skiller J, Spitzer R F. Tribol Trans, 1992, 35: 731
[15] Liu J D, Wang G C, Chen K M, Xu Z L, Hou D P. Met Heat Treat, 2006; 31: 57(刘菊东, 王贵成, 陈康敏, 许志龙, 侯达盘. 金属热处理, 2006; 31: 57)
[1] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[2] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[3] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[4] 周野,毛萍莉,王志,刘正,王峰. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53(7): 851-860.
[5] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[6] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[7] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[8] 王国田, 丁宏升, 陈瑞润, 郭景杰, 傅恒志. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响[J]. 金属学报, 2017, 53(11): 1461-1468.
[9] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[10] 王刚,徐磊,崔玉友,杨锐. TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*[J]. 金属学报, 2016, 52(9): 1079-1088.
[11] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[12] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[13] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[14] 孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
[15] 孟帅举,余晖,张慧星,崔红卫,王志峰,赵维民. Bi添加对挤压纯Mg组织和力学性能的影响*[J]. 金属学报, 2016, 52(7): 811-820.