Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 183-186    DOI: 10.3724/SP.J.1037.2011.00547
  论文 本期目录 | 过刊浏览 |
CaCl2-NaCl-CaO熔盐中电解精炼Si的研究
王淑兰,陈晓云
东北大学理学院, 沈阳 110089
STUDY ON THE ELECTRO–REFINING SILICON IN MOLTEN SALT CaCl2–NaCl–CaO
WANG Shulan, CHEN Xiaoyun
School of Sciences, Northeastern University, Shenyang 110004
引用本文:

王淑兰 陈晓云. CaCl2-NaCl-CaO熔盐中电解精炼Si的研究[J]. 金属学报, 2012, 48(2): 183-186.
, . STUDY ON THE ELECTRO–REFINING SILICON IN MOLTEN SALT CaCl2–NaCl–CaO[J]. Acta Metall Sin, 2012, 48(2): 183-186.

全文: PDF(475 KB)  
摘要: 以冶金级Si和电解Cu为原料, 制备了Cu-31Si(摩尔分数, %)合金. 以Cu-31Si合金为阳极、Mo为阴极和参比电极, 采用循环伏安和计时电位方法研究了1173 K下熔盐 81CaCl2-8.0NaCl-8.5CaO-2.5Si(摩尔分数, %)的阴极行为, 讨论了熔盐中Si电解精炼过程的还原步骤. 用SEM, EDS和电感耦合等离子原子发射光谱仪(ICPAES)分析和表征了Si晶体的形貌和组成.电解精炼后得到了多晶Si, 与冶金Si原料相比, 主要杂质含量都显著降低,特别是对太阳能级Si危害较大的杂质B和P去除效果明显, 分别从42×10-6和25×10-6降至4.5×10-6和8.2×10-6.电解精炼过程的电流效率为84.4%.
关键词 熔盐 电解精炼 Si    
Abstract:Use Cu–31Si alloy (31mol% Si) prepared by inductive melting metallurgical grade silicon as anode and molybdenum as cathode and reference electrode, the cathodic behavior of molten salt 81CaCl2–8.0 NaCl–8.5CaO–2.5Si (Mole fraction, %) at 1173 K was studied by means of cyclic voltammetry and chronopotentiometry, and the reduction steps of silicon from the molten salt were discussed. The electro–refining of silicon was performed in the two electrode system under the voltage of −0.2 V. SEM, EDS and inductively coupled plasma atomic emission spectrometry (ICPAES) technologies were used to analyze and characterize the morphology and composition of the deposited silicon. Polycrystalline silicon was obtained after the electro–refining. Main impurity in the metallurgical grade silicon are greatly decreased. Especially boron and phosphorous which are very harmful to solar cell grade silicon were greatly removed. The contents of boron and phosphorous are decreased from 42×10−6 and 25×10−6 to 4.5×10−6 and 8.2×10−6, respectively. The current efficiency of the electro–refining process is 84.4%.
Key wordsmolten salt    electro–refining    silicon
收稿日期: 2011-08-30     
基金资助:

国家自然科学基金资助项目51154002

作者简介: 王淑兰, 女, 1959年生, 教授
[1] O’Mara W C, Herring R B, Hunt I P. Handbook of Semiconductor Silicon Technology. New Jersey: Noyes Publications, 1990: 795

[2] Ciszek T F, Schwuttke G H, Yang H K. IBM J Res Dev, 1978; 23: 270

[3] Martorano M A, Ferreira Neto J B, Oliveira T S, Tsubak T O. Mater Sci Eng, 2011; B176: 217

[4] Ciftja A, Engh T A, Tangstad M, Anne K, Johannes O E. J Miner Met Mater Soc, 2010; 51: 56

[5] Pires J C S, Otubo J, Braga A F B, Mei P R. J Mater Process Technol, 2005; 169: 21

[6] Rousseau S, Benmansour M, Morvan D, Amouroux J. Solar Energy Mater Solar Cells, 2007; 91: 1906

[7] Hunt L P, Dosaj V D, McCormick J R, Crossman L D. Proc International Symposium on Solar Energy, Washington DC, Moly 5–17, 1976: 200

[8] Chu T L, Chu S S. J Electrochem Soc, 1983; 130: 455

[9] Dietl J. Sol Cells, 1983; 10: 145

[10] Ma X D, Zhang J, Wang T M, Li T J. Rare Met, 2009; 28: 221

[11] Santos I C, Goncalves A P, Santos C S, Almeida M, Afonso M H, Cruz M J. Hydrometallurgy, 1990; 23: 237

[12] Yu Z L, Ma W H, Dai Y N, Yang B, Liu D C, Dai W P, Wang J X. Trans Nonferrous Met Soc China, 2007; 17: 1030

[13] Aulish H A, Eisenrith K H, Urbach H P. J Mater Sci, 1984; 19: 1710

[14] Aratani F, Sakaguchi Y, Yuge N. Bull Jpn Inst Met, 1991; 30: 433

[15] Schulze F W, Fenzl H J, Geim K, Hecht H D, Aulich H A. in Ralph E L ed.. Proc 17th IEEE Photovoltaic Specialists Conf, New York: IEEE, 1984: 584

[16] Nohira T, Yasuda K, Ito Y. Nat Mater, 2003; 2: 397

[17] Deng Y, Wang D, Xiao W, Jin X, Hu X, Chen G Z. J Phys Chem, 2005; 109B: 14043

[18] Pistorius P C, Fray D J. J South Afr Inst Min Metall, 2006; 106: 31

[19] Yasuda K, Nohira T, Hagiwara R, Ogata Y H. Electrochim Acta, 2007; 53: 106

[20] Li J, Yan J F, Lai Y Q, Tian A L, Jia M, Yi J G. Acta Energy Solar Sin, 2010; 31: 1068

(李劬, 闫剑锋, 赖延清, 田忠良, 贾明, 伊继光. 太阳能学报, 2010; 31: 1068)

[21] Cai Z Y, Li Y G, He X F, Liang J L. Metall Mater Trans, 2010; 41B: 1033

[22] SGTE. http://www.sgte.org/fact/documentation/FTsalt/ CaCl2–NaCl.jpg

[23] Wang S L, Zhang F S, Liu X, Zhang L J. Thermo Acta, 2008; 470: 105

[24] Katsutoshi O, Ryosuke O S. JOM, 2002; 54: 59

[25] Schwandt C, Fray D J. Electrochim Acta, 2005; 51: 66

[26] Wang S L, Wang W, Li S C, Cao S H. IJMMM, 2010; 17: 791

[27] Luo Y R. Handbook of Chemical Bonding Energy. Beijing: Science press, 2005: 48

(罗渝然. 化学键能数据手册. 北京: 科学出版社, 2005: 48)

[28] Liang Y J, Che Y C. Handbook of Thermodynamic Data of of Inorganic Substances. Shenyang: Northeastern University press, 1993: 1

(梁英教, 车阴昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993: 1)

[29] SGTE. http://www.crct.polymtl.ca/fact/phase diagram.php? file=Cu–Si.jpg&dir=SGTE

[30] Zhang Z X, Wang R K. Principle and Method of Electrochemistry. Beijing: Science Press, 2000: 55

(张祖训, 汪尔康. 电化学原理与方法. 北京: 科学出版社, 2000: 55)
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[8] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[9] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[10] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[11] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[12] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[15] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.