Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 334-342    DOI: 10.3724/SP.J.1037.2011.00528
  论文 本期目录 | 过刊浏览 |
低C含Cu NV-F690特厚钢板的精细组织和强韧性
刘东升, 程丙贵, 陈圆圆
江苏省(沙钢)钢铁研究院, 张家港 215625
FINE MICROSTRUCTURE AND TOUGHNESS OF LOW CARBON COPPER CONTAINING ULTRA HIGH STRENGTH NV-F690 HEAVY STEEL PLATE
LIU Dongsheng, CHENG Binggui, CHEN Yuanyuan
Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625
引用本文:

刘东升 程丙贵 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性[J]. 金属学报, 2012, 48(3): 334-342.
, , . FINE MICROSTRUCTURE AND TOUGHNESS OF LOW CARBON COPPER CONTAINING ULTRA HIGH STRENGTH NV-F690 HEAVY STEEL PLATE[J]. Acta Metall Sin, 2012, 48(3): 334-342.

全文: PDF(7279 KB)  
摘要: 本文通过板坯连铸、钢板控轧控冷(TMCP)、固溶淬火回火(QT)工业生产流程, 开发低C含Cu高强韧NV-F690特厚(厚度t为80 mm)船体和海洋平台用钢板. 使用SEM, EBSD和TEM分别研究了淬火(Q)态和QT态钢板的精细组织, 测试了距离钢板表面$t$/4处 (高冷却速率)和芯部$t$/2处(低冷却速率)的室温硬度和拉伸性能, 在-60和-80 ℃下进行了Charpy冲击(Charpy V notch, CVN)示波实验. 结果表明, 淬火速率较大有利于板条组织形成和提高大角度晶界比例, $t$/4处的组织为板条状贝氏体(LB), 板条间存在细小片状马氏体/奥氏体(M/A)组元, 晶粒间大角度晶界(>15o)体积分数为67.5%; t/2处的组织为粒状贝氏体(GB)+LB, 大角度晶界体积分数为63.0%; Q态下的LB具有高位错密度, 但晶粒内不存在Cu析出相. 经过650 ℃回火150 min, 钢板的强韧性匹配优良, 低温下呈韧性断裂, 大量含Cu弥散沉淀相在基体组织内析出. t/2处的M/A组元分解为Cr-Mo碳化物, 贝氏体板条宽度为0.4 μm, 大角度晶界分数为62.5%; t/4处的LB板条回复, 板条内存在与基体取向差较大的亚晶, 大角度晶界分数提高到71.7%, 板条平均宽度为0.2 μm. 在-80 ℃下, NV-F690钢板t/4处的韧性高于t/2处的韧性. 随着纤维断裂位移的增大, 韧窝断裂区比例和韧窝尺寸逐渐增大, NV-F690钢低温Charpy冲击能量逐渐提高.
关键词 NV-F690特厚钢板精细显微组织冲击断裂行为强韧性    
Abstract:Advanced NV-F690 heavy steel plates for offshore structure and shipbuilding have been produced via continuous casting of the slab, thermomechanical control rolling of the plate followed by solutionizing (austenitizing), quenching and tempering (QT) steps. The present work is to reveal the microstructure evolution and evaluate the mechanical properties of 80 mm thick plates subjected to the QT process. The microstructures were characterized with SEM, EBSD and TEM. At quarter thickness ($t$/4) where the cooling rate was rapid, the as quenched microstructures consist of mainly lath--like bainite (LB), between the laths exist fine martensite/austenite (M/A) constituents. At center thickness (t/2), the as quenched microstructures consist of granular bainite (GB)+dislocated LB. The fraction of high angle grain boundary (HAGB) at t/4 of the quenched plate is 67.5% while that at t/2 is 63.0%. After tempering at 650 ℃ for 150 min, the average width of the laths is 0.2 μm at t/4 and\linebreak 0.4 μm at t/2. Cell structures with high misorientations exist in the tempered LB at t/4 while these are absent at t/2. The fraction of HAGB is increased to 71.7% at t/4 while that at t/2 is not significantly changed. Profuse Cu precipitation occurs and the M/A constituents decompose into Cr-Mo containing carbides during tempering. Ductile fracture behaviour is observed even at -80 ℃ at both t/2 and t/4 of the 80 mm thick NV-F690 plate treated by the QT process. The impact toughness at t/4 is higher than that at t/2 due to the predominance of finer LB and higher fraction of HAGB. With the increase of the displacement of the ductile crack propagation, the area with dimples and the size of the dimples increase leading to increased Charpy impact absorbed energy of the NV-F690 plate\linebreak at -80 ℃.
Key wordsNV-F690 heavy steel plate    fine microstructure    impact fracture behaviour    high-strength and high-toughness
收稿日期: 2011-08-19     
作者简介: 刘东升, 男, 1962年生, 高级研究员, 博士
[1] Weng Y Q, Kang Y L. Iron Steel, 2010; 45(9): 1

(翁宇庆, 康永林. 钢铁, 2010; 45(9): 1)

[2] Hodnik P, F¨urst C, Pennerstorfer P, Lengauer H. Stahl Eisen, 2008; 128(10): 35

[3] Schmidt D, Dehmel R, Horn G. Stahl Eisen, 2008; 128(8): 25

[4] Shikanai N, Mitao S, Endo S. JFE Tech Report, 2008; (1): 1

[5] Sch¨utz W, Schr¨oter F. Mater Sci Technol, 2005; 21: 590

[6] DeArdo A J. ISIJ Int, 1995; 35: 946

[7] Dhua S K, Mukerjee D, Sarma D S. Metall Mater Trans, 2003; 34A: 2493

[8] Shome M, Mohanty O N. Metall Mater Trans, 2006; 37A: 2159

[9] Dhua S K, Mukerjee D, Sarma D S. Metall Mater Trans, 2001; 32A: 2259

[10] Mujahid M, Lis A K, Garcia C I, DeArdo A J. J Mater Eng Perform, 1998; 7: 247

[11] Hwang G C, Lee S, Yoo J Y, Choo W Y. Mater Sci Eng, 1998; A252: 256

[12] Luo X B, Yang C F, Su H, Chai F. Trans Mater Heat Treat, 2011; 32(6): 73

(罗小兵, 杨才福, 苏航, 柴峰. 材料热处理学报, 2011; 32(6): 73)

[13] Liu D S, Cheng B G, Luo M. Trans Mater Heat Treat, 2011; 32(9): 125

(刘东升, 程丙贵, 罗咪. 材料热处理学报, 2011; 32(9): 125)

[14] Yuan G, Han Y, Wang C, Wang Z D, Wang D G. Trans Mater Heat Treat, 2010; 31(12): 148

(袁国, 韩 毅, 王超, 王昭东, 王国栋. 材料热处理学报, 2010; 31(12): 148)

[15] Gao G H, Zhang H, Bai B Z. Acta Metall Sin, 2011; 47: 513

(高古辉, 张寒, 白秉哲. 金属学报, 2011; 47: 513)

[16] Han S Y, Shin S Y, Lee S, Kim N J, Bae J H, Kim K. Metall Mater Trans, 2010; 41A: 329

[17] Miao C L, Shang C J, Wang X M, Zhang L F, Mani S. Acta Metall Sin, 2010; 46: 541

(缪成亮, 尚成嘉, 王学敏, 张龙飞, Mani S. 金属学报, 2010; 46: 541)

[18] Liu D S, Cheng B G, Luo M. Acta Metall Sin, 2011; 47: 1233

(刘东升, 程丙贵, 罗咪. 金属学报, 2011; 47: 1233)

[19] Nie Y, Shang C J, Chen H, Wang X M, He X L. Trans Mater Heat Treat, 2010; 31(2): 51

(聂燚, 尚成嘉, 陈辉, 王学敏, 贺信莱. 材料热处理学报, 2010; 31(2): 51)

[20] Hwang B, Lee C G, Lee T H. Metall Mater Trans, 2010; 41A: 85

[21] Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K. Metall Mater Trans, 2010; 41A: 1851

[22] Liu D, Cheng B, Luo M. ISIJ Int, 2011; 51: 603

[23] Bhagat A N, Pabi S K, Ranganathan S, Mohanty O N. ISIJ Int, 2004; 44: 115

[24] Wiesner C S. Int J Pres Ves Piping, 1996; (69): 185

[25] Hashemi S H. Int J Pres Ves Piping, 2008; (85): 879

[26] Deng W, Gao X H, Qin X M, Zhao D W, Du L X, Wang G D. Acta Metall Sin, 2010; 46: 533

(邓伟, 高秀华, 秦小梅, 赵德文, 杜林秀, 王国栋. 金属学报, 2010; 46: 533)
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[3] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[4] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
[5] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[6] 安同邦,田志凌,单际国,魏金山. 保护气对1000 MPa级熔敷金属组织及力学性能的影响*[J]. 金属学报, 2015, 51(12): 1489-1499.
[7] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[8] 冯春 方鸿生 白秉哲 郑燕康. 0.02%Nb空冷仿晶界型铁素体/粒状贝氏体复相钢的相变及强韧性[J]. 金属学报, 2010, 46(4): 473-478.
[9] 刘东雨; 徐鸿; 杨昆; 白秉哲; 方鸿生 . 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响[J]. 金属学报, 2004, 40(8): 0-886 .
[10] 张明星;康沫狂. Si对低碳贝氏体钢组织和性能的影响[J]. 金属学报, 1993, 29(1): 6-10.
[11] 陈大明;康沫狂;谭若兵. 40CrMnSiMoVA钢准贝氏体的疲劳性能[J]. 金属学报, 1991, 27(6): 64-69.